Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. FTIR Analysis
3.2. X-ray Diffraction (XRD)
3.3. Thermogravimetric Analysis (TGA)
3.4. Mechanical Properties and Nanoindentation
3.5. Creep Resistance
3.6. Abrasion Resistance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, W.; Liu, Y.; Wei, J.; Li, X.; Li, N.; Liu, J. An Intelligent Fire-Protection Coating Based on Ammonium Polyphosphate/Epoxy Composites and Laser-Induced Graphene. Polymers 2021, 13, 984. [Google Scholar] [CrossRef] [PubMed]
- Abakah, R.R.; Huang, F.; Hu, Q.; Wang, Y.; Jing, L. Comparative Study of Corrosion Properties of Different Graphene Nanoplate/Epoxy Composite Coatings for Enhanced Surface Barrier Protection. Coatings 2021, 11, 285. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; He, Y.; Chen, C.; Zhang, C.; Xie, P.; Zhong, F.; Li, H.; Chen, J.; Li, Z. APTES Modification of Molybdenum Disulfide to Improve the Corrosion Resistance of Waterborne Epoxy Coating. Coatings 2021, 11, 178. [Google Scholar] [CrossRef]
- Yuan, W.; Hu, Q.; Zhang, J.; Huang, F.; Liu, J. Hydrophobic Modification of Graphene Oxide and Its Effect on the Corrosion Resistance of Silicone-Modified Epoxy Resin. Metals 2021, 11, 89. [Google Scholar] [CrossRef]
- Luna-Xavier, J.L.; Guyot, A.; Bourgeat-Lami, E. Synthesis and characterization of silica/poly (methyl methacrylate) nanocomposite latex particles through emulsion polymerization using a cationic azo initiator. J. Colloid Interf. Sci. 2002, 250, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.X.; Wu, L.M.; Sun, J.; Shen, W.D. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog. Org. Coat. 2002, 45, 33–42. [Google Scholar] [CrossRef]
- Tuong, V.M.; Huyen, N.V.; Kien, N.T.; Dien, N.V. Durable Epoxy@ZnO Coating for Improvement of Hydrophobicity and Color Stability of Wood. Polymers 2019, 11, 1388. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.R.; Mi, X.Q.; Tian, J.Y.; Zhang, J.H.; Xu, T.W. Supported Ionic Liquid Silica as Curing Agent for Epoxy Composites with Improved Mechanical and Thermal Properties. Polymers 2017, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Zheng, T.; Wang, X.; Lu, C.; Zhang, X.; Ji, Y.; Bai, C.; Chen, Y.; Qiao, Y. Studies on Curing Kinetics and Tensile Properties of Silica-Filled Phenolic Amine/Epoxy Resin Nanocomposite. Polymers 2019, 11, 680. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wen, H.; Wu, Y. Computational thermomechanical properties of silica–epoxy nanocomposites by molecular dynamic simulation. Polymers 2017, 9, 430. [Google Scholar] [CrossRef]
- Sprenger, S. Nanosilica-Toughened Epoxy Resins. Polymers 2020, 12, 1777. [Google Scholar] [CrossRef]
- Knudsen, O.Ø.; Steinsmo, U.; Bjordal, M. Zinc-rich primers—Test performance and electrochemical properties. Prog. Org. Coat. 2005, 54, 224–229. [Google Scholar] [CrossRef]
- Mitchell, M.; Smith, A. Corrosion-Prevention 9th-Proceedings; Australasian Corrosion Association Inc.; pp. 28–30. Available online: https://scholar.google.com/scholar_lookup?title=Corrosion%20and%20Prevention%2098%20Proceedings%20Australasian%20Corrosion%20Association&publication_year=1998&author=M.%20Mitchell&author=A.%20Smith (accessed on 4 May 2021).
- Fernandez-Prini, R.; Kapusta, S. Electrochemical Testing of the Protective Power of Zinc Rich Paints. J. Oil Colour Chem. Assoc. 1979, 62, 93–98. [Google Scholar]
- Novak, I.; Krupa, I.; Chodak, I. Analysis of correlation between percolation concentration and elongation at break in filled electroconductive epoxy-based adhesives. Eur. Polym. J. 2003, 39, 585–592. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Wang, F.H.; Du, Y.L. Effect of nano-sized titanium powder addition on corrosion performance of epoxy coatings. Surf. Coat. Technol. 2007, 201, 7241–7245. [Google Scholar] [CrossRef]
- Shi, X.M.; Nguyen, T.A.; Suo, Z.Y.; Liu, Y.J.; Avci, R. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 2009, 204, 237–245. [Google Scholar] [CrossRef]
- Shi, H.W.; Liu, F.C.; Yang, L.H.; Han, E.H. Characterization of protective performance of epoxy reinforced with nanometer-sized TiO2 and SiO2. Prog. Org. Coat. 2008, 62, 359–368. [Google Scholar] [CrossRef]
- Wichmann, M.H.G.; Cascione, M.; Fiedler, B.; Quaresimin, M.; Schulte, K. Influence of surface treatment on mechanical behaviour of fumed silica/epoxy resin nanocomposites. Compos. Interface 2006, 13, 699–715. [Google Scholar] [CrossRef]
- Reddy, C.S.; Patra, P.K.; Das, C.K. Macromolecular Symposia. In Ethylene–Octene Copolymer–Nanosilica Nanocomposites: Effects of Epoxy Resin Functionalized Nanosilica on Morphology, Mechanical, Dynamic Mechanical and Thermal Properties; Wiley Online Library: Hoboken, NJ, USA, 2009; pp. 119–129. [Google Scholar]
- Zou, W.; Peng, J.; Yang, Y.; Zhang, L.; Liao, B.; Xiao, F. Effect of nano-SiO2 on the performance of poly (MMA/BA/MAA)/EP. Mater. Lett. 2007, 61, 725–729. [Google Scholar] [CrossRef]
- Cheng, L.H.; Zheng, L.Y.; Li, G.R.; Zeng, J.T.; Yin, Q.R. Influence of particle surface properties on the dielectric behavior of silica/epoxy nanocomposites. Phys. B Condens. Matter 2008, 403, 2584–2589. [Google Scholar] [CrossRef]
- Liu, X.; Chen, X.; Ren, J.; Chang, M.; He, B.; Zhang, C. Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films. Int. J. Biol. Macromol. 2019, 132, 978–986. [Google Scholar] [CrossRef]
- Samad, U.A.; Alam, M.A.; Anis, A.; Sherif, E.-S.M.; Al-Mayman, S.I.; Al-Zahrani, S.M. Effect of incorporated ZnO nanoparticles on the corrosion performance of SiO2 nanoparticle-based mechanically robust epoxy coatings. Materials 2020, 13, 3767. [Google Scholar] [CrossRef]
- Hare, C.H. The degradation of coatings by ultraviolet light and electromagnetic radiation. J. Prot. Coat. Linings 1992. Available online: https://www.q-lab.com/documents/public/70ccb209-bf41-4da0-bb80-964d597fc728.pdf (accessed on 6 May 2021).
- Asmatulu, R.; Mahmud, G.A.; Hille, C.; Misak, H.E. Effects of UV degradation on surface hydrophobicity, crack, and thickness of MWCNT-based nanocomposite coatings. Prog. Org. Coat. 2011, 72, 553–561. [Google Scholar] [CrossRef]
- Sobana, N.; Swaminathan, M. The effect of operational parameters on the photocatalytic degradation of acid red 18 by ZnO. Sep. Purif. Technol. 2007, 56, 101–107. [Google Scholar] [CrossRef]
- ANS, M.; Farooq, A.; Lodhi, M.; Deen, K. Performance evaluation of epoxy coatings containing different fillers in natural and simulated environmental conditions for corrosion resistance. J. Biomed. Eng. Biosci. 2019. [Google Scholar] [CrossRef]
- Tolle, T.B.; Anderson, D.P. Morphology development in layered silicate thermoset nanocomposites. Compos. Sci. Technol. 2002, 62, 1033–1041. [Google Scholar] [CrossRef]
- Gurusideswar, S.; Velmurugan, R.; Gupta, N.K. Study of of rate dependent behavior of glass/epoxy composites with nanofillers using non-contact strain measurement. Int. J. Impact Eng. 2017, 110, 324–337. [Google Scholar] [CrossRef]
- Lionetto, F.; Mascia, L.; Frigione, M. Evolution of transient states and properties of an epoxy–silica hybrid cured at ambient temperature. Eur. Polym. J. 2013, 49, 1298–1313. [Google Scholar] [CrossRef]
- Gao, M.; Wu, W.; Yan, Y. Thermal degradation and flame retardancy of epoxy resins containing intumescent flame retardant. J. Therm. Anal. Calorim. 2009, 95, 605–608. [Google Scholar] [CrossRef]
- Arabli, V.; Aghili, A. The effect of silica nanoparticles, thermal stability, and modeling of the curing kinetics of epoxy/silica nanocomposite. Adv. Compos. Mater. 2015, 24, 561–577. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Attar, M.M. Characterization of the fracture behavior and viscoelastic properties of epoxy-polyamide coating reinforced with nanometer and micrometer sized ZnO particles. Prog. Org. Coat. 2011, 71, 242–249. [Google Scholar] [CrossRef]
- Samad, U.A.; Alam, M.A.; Chafidz, A.; Al-Zahrani, S.M.; Alharthi, N.H. Enhancing mechanical properties of epoxy/polyaniline coating with addition of ZnO nanoparticles: Nanoindentation characterization. Prog. Org. Coat. 2018, 119, 109–115. [Google Scholar] [CrossRef]
- Aung, M.M.; Li, W.J.; Lim, H.N. Improvement of anticorrosion coating properties in Bio-Based polymer epoxy acrylate incorporated with nano zinc oxide particles. Ind. Eng. Chem. Res. 2020, 59, 1753–1763. [Google Scholar] [CrossRef]
- Hsu, S.C.; Whang, W.T.; Hung, C.H.; Chiang, P.C.; Hsiao, K.N. Effect of the polyimide structure and ZnO concentration on the morphology and characteristics of polyimide/ZnO nanohybrid films. Macromol. Chem. Phys. 2005, 206, 291–298. [Google Scholar] [CrossRef]
- Baghdadi, Y.N.; Youssef, L.; Bouhadir, K.; Harb, M.; Mustapha, S.; Patra, D.; Tehrani-Bagha, A.R. The effects of modified zinc oxide nanoparticles on the mechanical/thermal properties of epoxy resin. J. Appl. Polym. Sci 2020, 137, 49330. [Google Scholar] [CrossRef]
- Mohan, A.; Renjanadevi, B. Engineering, Effect of zinc oxide nanoparticles on mechanical properties of diglycidyl ether of bisphenol-A. J. Mater. Sci. 2016, 5, 1000291. [Google Scholar]
- Oliver, W.C.; Pharr, G.M. An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Karasinski, E.N.; Da Luz, M.G.; Lepienski, C.M.; Coelho, L.A.F. Nanostructured coating based on epoxy/metal oxides: Kinetic curing and mechanical properties. Thermochim. Acta 2013, 569, 167–176. [Google Scholar] [CrossRef]
- Lizundia, E.; Serna, I.; Axpe, E.; Vilas, J.L. Free-volume effects on the thermomechanical performance of epoxy–SiO2 nanocomposites. J. Appl. Polym. Sci. 2017, 134, 45216. [Google Scholar] [CrossRef]
- Alam, M.A.; Samad, U.A.; Alam, M.; Anis, A.; Al-Zahrani, S.M. Enhancement in Nanomechanical, Thermal, and Abrasion Properties of SiO2 Nanoparticle-Modified Epoxy Coatings. Coatings 2020, 10, 310. [Google Scholar] [CrossRef] [Green Version]
- Gafsi, N.; Smaoui, I.; Verdejo, R.; Kharrat, M.; Manchado, M.Á.; Dammak, M. Tribological and mechanical characterization of epoxy/graphite composite coatings: Effects of particles’ size and oxidation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2021, 235, 129–137. [Google Scholar] [CrossRef]
- Thipperudrappa, S.; Ullal Kini, A.; Hiremath, A. Influence of zinc oxide nanoparticles on the mechanical and thermal responses of glass fiber-reinforced epoxy nanocomposites. Polym. Compos. 2020, 41, 174–181. [Google Scholar] [CrossRef]
- Li, J.H.; Hong, R.Y.; Li, M.Y.; Li, H.Z.; Zheng, Y.; Ding, J. Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings. Prog. Org. Coat. 2009, 64, 504–509. [Google Scholar] [CrossRef]
- Vlad-Cristea, M.; Riedl, B.; Blanchet, P.; Jimenez-Pique, E. Nanocharacterization techniques for investigating the durability of wood coatings. Eur. Polym. J. 2012, 48, 441–453. [Google Scholar] [CrossRef]
- Skaja, A.; Fernando, D.; Croll, S. Mechanical property changes and degradation during accelerated weathering of polyester-urethane coatings. J. Coat. Technol. Res. 2006, 3, 41–51. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhu, M.L.; Chang, L.; Ye, L. Mechanical reinforcement and wear resistance of aligned carbon nanotube/epoxy nanocomposites from nanoscale investigation. J. Appl. Polym. Sci. 2020, 137, 49182. [Google Scholar] [CrossRef]
- Yang, J.L.; Zhang, Z.; Friedrich, K.; Schlarb, A.K. Creep resistant polymer nanocomposites reinforced with multiwalled carbon nanotubes. Macromol. Rapid Commun. 2007, 28, 955–961. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Attar, M.M. Studying the corrosion resistance and hydrolytic degradation of an epoxy coating containing ZnO nanoparticles. Mater. Chem. Phys. 2011, 130, 1208–1219. [Google Scholar] [CrossRef]
Formulation Code | Epoxy | MIBK (mL) | Xylene (mL) | Silane (gm) | SiO2 (gm) | ZnO (gm) | D-450 |
---|---|---|---|---|---|---|---|
Neat | 83.34 | 8 | 8 | 2.0 | 0 | 0 | 16.66 |
ESZ-1 | 83.34 | 8 | 8 | 2.0 | 5 | 1 | 16.66 |
ESZ-2 | 83.34 | 8 | 8 | 2.0 | 5 | 2 | 16.66 |
ESZ-3 | 83.34 | 8 | 8 | 2.0 | 5 | 3 | 16.66 |
Sample | Peak Position (2θ) | FWHM | d-Spacing (Å) | Crystallite Size (nm) | Average Crystallite Size (nm) |
---|---|---|---|---|---|
SiO2 | 22.41 | 5.67 | 3.96 | 1.41 | 1.94 |
29.14 | 5.4 | 3.06 | 1.5 | ||
41.93 | 2.88 | 2.15 | 2.92 | ||
ZnO | 31.73 | 0.28 | 2.82 | 28.89 | 27.07 |
34.4 | 0.29 | 2.6 | 28.61 | ||
36.22 | 0.3 | 2.48 | 27.96 | ||
47.49 | 0.33 | 1.91 | 26.04 | ||
56.56 | 0.37 | 1.63 | 23.82 |
Sample | Peak Position (2θ) | FWHM | d-Spacing (Å) | Crystallite Size (nm) | Average Crystallite Size (nm) |
---|---|---|---|---|---|
SNZ-1 | 31.77 | 0.36 | 2.81 | 22.40 | 26.26 |
34.42 | 0.31 | 2.60 | 26.15 | ||
36.28 | 0.32 | 2.47 | 25.80 | ||
47.61 | 0.33 | 1.91 | 26.37 | ||
56.65 | 0.29 | 1.62 | 30.57 | ||
SNZ-2 | 31.79 | 0.40 | 2.81 | 20.44 | 22.97 |
34.44 | 0.35 | 2.60 | 23.36 | ||
36.28 | 0.35 | 2.47 | 23.38 | ||
47.55 | 0.39 | 1.91 | 21.95 | ||
56.63 | 0.35 | 1.62 | 25.71 | ||
SNZ-3 | 32.26 | 0.32 | 2.77 | 25.92 | 26.87 |
34.91 | 0.30 | 2.57 | 27.90 | ||
36.75 | 0.30 | 2.44 | 27.47 | ||
48.06 | 0.35 | 1.89 | 24.50 | ||
57.12 | 0.31 | 1.61 | 28.55 |
Sample | Peak Position (2θ) | FWHM | d-Spacing (Å) | Crystallite Size (nm) | Average Crystallite Size (nm) |
---|---|---|---|---|---|
SNZ-1 | 32.06 | 0.37 | 2.79 | 22.22 | 23.62 |
34.75 | 0.33 | 2.58 | 25.22 | ||
36.56 | 0.38 | 2.45 | 21.94 | ||
47.82 | 0.32 | 1.90 | 26.85 | ||
56.93 | 0.41 | 1.62 | 21.863 | ||
SNZ-2 | 32.06 | 0.35 | 2.79 | 23.36 | 24.53 |
34.73 | 0.35 | 2.58 | 23.80 | ||
36.56 | 0.36 | 2.45 | 23.12 | ||
47.86 | 0.31 | 1.90 | 27.66 | ||
56.91 | 0.36 | 1.62 | 24.73 | ||
SNZ-3 | 32.06 | 0.35 | 2.79 | 23.20 | 22.73 |
34.69 | 0.34 | 2.58 | 24.06 | ||
36.54 | 0.36 | 2.46 | 22.82 | ||
47.84 | 0.43 | 1.90 | 19.84 | ||
56.89 | 0.38 | 1.62 | 23.74 |
Formulation | Degradation Temperature 15% Loss (°C) | Degradation Temperature 25% Loss (°C) | Degradation Temperature 50% Loss (°C) | Degradation Temperature 75% Loss (°C) | Residue (%) |
---|---|---|---|---|---|
SN-5 | 344.10 | 377.80 | 420.90 | 477.03 | 12.97 |
ESZ-1 | 342.16 | 372.32 | 405.23 | 434.79 | 16.43 |
ESZ-2 | 343–01 | 370.82 | 401.45 | 434.55 | 17.33 |
ESZ-3 | 339.25 | 367.46 | 398.83 | 438.43 | 19.07 |
Formulation Code | Thickness (µm) | Pendulum Hardness (Oscillations) | Scratch Resistance (kg) | Impact Strength (lb/in2) |
---|---|---|---|---|
SN-5 | 65 ± 5 | 118 | 9 | 128 |
ESZ-1 | 60 ± 5 | 136 | 8 | 120 |
ESZ-2 | 65 ± 5 | 147 | 9 | 136 |
ESZ-3 | 65 ± 5 | 135 | 6 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, M.A.; Samad, U.A.; Anis, A.; Alam, M.; Ubaidullah, M.; Al-Zahrani, S.M. Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Polymers 2021, 13, 1490. https://doi.org/10.3390/polym13091490
Alam MA, Samad UA, Anis A, Alam M, Ubaidullah M, Al-Zahrani SM. Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Polymers. 2021; 13(9):1490. https://doi.org/10.3390/polym13091490
Chicago/Turabian StyleAlam, Mohammad Asif, Ubair Abdus Samad, Arfat Anis, Manawwer Alam, Mohd Ubaidullah, and Saeed M. Al-Zahrani. 2021. "Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique" Polymers 13, no. 9: 1490. https://doi.org/10.3390/polym13091490
APA StyleAlam, M. A., Samad, U. A., Anis, A., Alam, M., Ubaidullah, M., & Al-Zahrani, S. M. (2021). Effects of SiO2 and ZnO Nanoparticles on Epoxy Coatings and Its Performance Investigation Using Thermal and Nanoindentation Technique. Polymers, 13(9), 1490. https://doi.org/10.3390/polym13091490