Influence of the Presence of Choline Chloride on the Classical Mechanism of “Gelatinization” of Starch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparations
2.3. Methods
2.3.1. Differential Scanning Calorimetry Measurements
2.3.2. X-ray Diffraction
3. Results and Discussion
3.1. Gelatinization of Different Starches
3.2. Influence of Choline Chloride on Starch Destructuration
3.3. Penetration of the Plasticizer into the Starch Grain
3.4. Impact of the Formulation on Starch Gelatinization
- Formulation 1: the wheat flour was mixed with water before the introduction of choline chloride for [FW20W18]Cc62.
- Formulation 2: choline chloride was mixed with water before being applied to the wheat flour for FW20[Cc62W18].
- Formulation 3: the wheat flour was mixed with choline chloride before the introduction of water for [FW20Cc62]W18.
3.5. Evolution of the Structure of Different Starches in the Presence of Choline Chloride during Heating Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Locke, K.W.; Fielding, S. Enhancement of salt intake by choline chloride. Physiol. Behav. 1994, 55, 1039. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Kainuma, K.; French, D. Electron microscopic observations of waxy maize starch. J. Ultrasructure Res. 1979, 69, 249. [Google Scholar] [CrossRef]
- Oostergetel, G.T.; van Bruggen, F.J. On the Origin of a Low Angle Spacing in Starch. Starch Stärke 1989, 41, 331. [Google Scholar] [CrossRef]
- Atwell, W.A.; Hood, L.F.; Lineback, D.R.; Marston, E.V.; Zobel, H.F. The terminology and methodology associated with basic starch phenomenon. Cereal Foods World 1988, 33, 306. [Google Scholar]
- Lelievre, J. Starch gelatinization. J. Appl. Polym. Sci. 1974, 18, 293. [Google Scholar] [CrossRef]
- Nikolic, M.A.L.; O’Sullivan, C.; Rounsefell, B.; Halley, P.J.; Truss, R.; Clarke, W.P. The anaerobic degradability of thermoplastic starch: Polyvinyl alcohol blends: Potential biodegradable food packaging materials. Bioresour. Technol. 2009, 100, 1705. [Google Scholar]
- Liu, H.; Xie, F.; Yu, L.; Chen, L.; Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 2009, 34, 1348. [Google Scholar] [CrossRef]
- Xie, F.; Halley, P.J.; Avérous, L. Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog. Polym. Sci. 2012, 37, 595. [Google Scholar] [CrossRef]
- Biswas, A.; Shogren, R.L.; Stevenson, G.D.; Willett, J.L.; Bhowmik, P.K. Ionic liquids as solvents for biopolymers: Acylation of starch and zein protein. Carbohydr. Polym. 2006, 66, 546. [Google Scholar] [CrossRef]
- Lappalainen, K.; Kärkkäinen, J.; Lajunen, M. Dissolution and depolymerization of barley starch in selected ionic liquids. Carbohydr. Polym. 2013, 93, 89. [Google Scholar] [CrossRef]
- Liu, W.; Budtova, T. Dissolution of unmodified waxy starch in ionic liquid and solution rheological properties. Carbohydr. Polym. 2013, 93, 199. [Google Scholar] [CrossRef]
- Mateyawa, S.; Xie, D.F.; Truss, R.W.; Halley, P.J.; Nicholson, T.M.; Shamshina, J.L.; Rogers, R.D.; Boehm, M.W.; McNally, T. Effect of the ionic liquid 1-ethyl-3-methylimidazolium acetate on the phase transition of starch: Dissolution or gelatinization? Carbohydr. Polym. 2013, 94, 520. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, D.G.; Biswas, A.; Jane, J.-L.; Inglett, G.E. Changes in structure and properties of starch of four botanical sources dispersed in the ionic liquid, 1-butyl-3-methylimidazolium chloride. Carbohydr. Polym. 2007, 67, 21. [Google Scholar] [CrossRef]
- Zdanowicz, M.; Spychaj, T. Ionic liquids as starch plasticizers or solvents. Polim. Polym. 2011, 56, 861. [Google Scholar]
- Decaen, P.; Rolland-Sabaté, A.; Guilois, S.; Jury, V.; Allanic, N.; Colomines, G.; Lourdin, D.; Leroy, E. Choline chloride vs choline ionic liquids for starch thermoplasticization. Carbohydr. Polym. 2017, 177, 424. [Google Scholar] [CrossRef]
- Sciarini, L.S.; Rolland-Sabaté, A.; Guilois, S.; Decaen, P.; Leroy, E.; Le Bail, P. Understanding the destructuration of starch in water–ionic liquid mixtures. Green Chem. 2015, 17, 291. [Google Scholar] [CrossRef]
- Le-Bail, P.; Houinsou-Houssou, B.; Kosta, M.; Pontoire, B.; Gore, E.; Le-Bail, A. Molecular encapsulation of linoleic and linolenic acids by amylose using hydrothermal and high-pressure treatments. Food Res. Int. 2015, 67, 223. [Google Scholar] [CrossRef]
- Biliaderis, C.G.; Page, C.M.; Slade, L.; Sirett, R.R. Thermal behaviour of amylose-lipid complexes. Carbohydr. Polym. 1985, 47, 73. [Google Scholar]
- Kugimiya, M.; Donova, J.W.; Wong, R.Y. Phase Transitions of Amylose-Lipid Complexes in Starches: A Calorimetric Study. Starch Stärke 1980, 32, 265. [Google Scholar] [CrossRef]
- Chiotelli, E.; Pilosio, G.; Le Meste, M. Effect of sodium chloride on the gelatinization of starch: A multimeasurement study. Biopolymers 2002, 63, 41. [Google Scholar] [CrossRef]
- Chungcharoen, A.; Lund, D.B. Influence of Solutes and Water on Rice Starch Gelatinization. Cereal Chem. 1987, 64, 240. [Google Scholar]
- Jane, J.-L. Mechanism of Starch Gelatinization in Neutral Salt Solutions. Starch Stärke 1993, 45, 161. [Google Scholar] [CrossRef]
- Ahmad, F.B.; William, P.A. Effect of Salts on the Gelatinization and Rheological Properties of Sago Starch. J. Agric. Food Chem. 1999, 47, 3359. [Google Scholar] [CrossRef] [PubMed]
- Ghani, M.B.A.; Che Man, Y.B.; Ali, A.B.; Hashim, D.B.M. Differential scanning calorimetry: Gelatinisation of sago starch in the presence of sucrose and sodium chloride. J. Sci. Food Agric. 1999, 79, 2001. [Google Scholar] [CrossRef]
- Seetharaman, K.; Yao, N.; Rout, M.K. Role of Water in Pretzel Dough Development and Final Product Quality. Cereal Chem. 2004, 81, 336. [Google Scholar] [CrossRef]
- Koganti, N.; Mitchell, J.R.; Ibbett, R.N.; Foster, T.J. Solvent Effects on Starch Dissolution and Gelatinization. Biomacromolecus 2011, 12, 2888. [Google Scholar] [CrossRef]
- Waigh, T.A.; Kato, K.L.; Donald, A.M.; Gidley, M.J.; Clarke, C.J.; Riekel, C. Side-Chain Liquid-Crystalline Model for Starch. Starch Stärke 2000, 52, 450. [Google Scholar] [CrossRef]
- Fannon, J.E.; Hauber, R.J.; BeMiller, J.N. Surface Pores of Starch Granules. Cereal Chem. 1992, 69, 284. [Google Scholar]
- Waigh, T.A.; Gidley, M.J.; Komanshek, B.U.; Donald, A.M. The phase transformations in starch during gelatinisation: A liquid crystalline approach. Carbohydr. Polym. 2000, 328, 165. [Google Scholar] [CrossRef]
x,y | Waxy-Corn Starch SWC20[CcxWy] | Potato Starch SP20[CcxWy] | Wheat Starch SW20[CcxWy] | Wheat Flour FW20[CcxWy] | ||||
---|---|---|---|---|---|---|---|---|
ΔHGe, J/g | TGe, °C | ΔHGe, J/g | TGe, °C | ΔHGe, J/g | TGe, °C | ΔHGe, J/g | TGe, °C | |
x = 0 y = 80 | 10.8 ± 0.2 | 70.8 ± 0.1 | 12.0 ± 0.1 | 65.6 ± 0.1 | 7.2 ± 0.1 | 58.1 ± 0.1 | 5.2 ± 0.1 | 61.7 ± 0.2 |
x = 8 y = 72 | 12.4 ± 0.1 | 82.9 ± 0.1 | 12.2 ± 0.3 | 71.4 ± 0.1 | 8.4 ± 0.4 | 71.0 ± 0.1 | 6.3 ± 0.3 | 73.4 ± 0.4 |
x = 16 y = 64 | 13.3 ± 0.1 | 90.1 ± 0.2 | 12.8 ± 0.1 | 77.2 ± 0.1 | 8.8 ± 0.9 | 78.6 ± 0.1 | 6.7 ± 0.6 | 80.8 ± 0.3 |
x = 24 y = 56 | 14.9 ± 0.4 | 96.1 ± 0.2 | 13.4 ± 0.4 | 84.2 ± 0.1 | 10.3 ± 0.2 | 85.2 ± 0.1 | 7.7 ± 0.6 | 86.8 ± 0.7 |
x = 32 y = 48 | 14.9 ± 0.3 | 100.0 ± 0.1 | 13.6 ± 0.1 | 91.7 ± 0.1 | 11.4 ± 0.5 | 89.9 ± 0.1 | 8.6 ± 0.2 | 91.9 ± 0.2 |
x = 40 y = 40 | 14.9 ± 0.3 | 101.3 ± 0.1 | 14.2 ± 0.1 | 99.1 ± 0.1 | 12.2 ± 0.3 | 92.7 ± 0.1 | 9.2 ± 0.9 | 94.8 ± 0.1 |
x = 48 y = 32 | 16.8 ± 0.5 | 98.6 ± 0.1 | 14.0 ± 0.2 | 104.5 ± 0.1 | 13.0 ± 0.2 | 92.2 ± 0.1 | 9.7 ± 0.2 | 93.8 ± 0.1 |
x = 56 y = 24 | 16.1 ± 0.1 | 90.7 ± 0.1 | 13.5 ± 0.3 | 102.1 ± 0.1 | 12.0 ± 0.2 | 87.1 ± 0.3 | 9.2 ± 0.6 | 87.4 ± 0.2 |
x = 64 y = 16 | N/A | 79.9 ± 0.2 | N/A | 95.5 ± 0.2 | N/A | 81.0 ± 0.6 | N/A | 84.5 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crucean, D.; Pontoire, B.; Debucquet, G.; Le-Bail, A.; Le-Bail, P. Influence of the Presence of Choline Chloride on the Classical Mechanism of “Gelatinization” of Starch. Polymers 2021, 13, 1509. https://doi.org/10.3390/polym13091509
Crucean D, Pontoire B, Debucquet G, Le-Bail A, Le-Bail P. Influence of the Presence of Choline Chloride on the Classical Mechanism of “Gelatinization” of Starch. Polymers. 2021; 13(9):1509. https://doi.org/10.3390/polym13091509
Chicago/Turabian StyleCrucean, Doina, Bruno Pontoire, Gervaise Debucquet, Alain Le-Bail, and Patricia Le-Bail. 2021. "Influence of the Presence of Choline Chloride on the Classical Mechanism of “Gelatinization” of Starch" Polymers 13, no. 9: 1509. https://doi.org/10.3390/polym13091509
APA StyleCrucean, D., Pontoire, B., Debucquet, G., Le-Bail, A., & Le-Bail, P. (2021). Influence of the Presence of Choline Chloride on the Classical Mechanism of “Gelatinization” of Starch. Polymers, 13(9), 1509. https://doi.org/10.3390/polym13091509