ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instruments and Analysis
2.3. Synthesis of ABC-Type Triblock Copolymer by Aqueous Cu(0)-Mediated Polymerization at 0.0 °C
3. Results and Discussion
3.1. Investigating the Potential for ABC-Type Triblock Copolymer Synthesis via Chain Extension of PHEAA or PDMA Macroinitiator
3.2. Investigating the Potential for Utilizing Halogen Exchange to Improve Resistance against Hydrolysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.H.; Shiu, C.C.; Chen, T.L.; Chen, H.L.; Tsai, J.C. Solubilization behavior of homopolymer in its blend with the block copolymer displaying the feature of lower critical ordering transition. Polymers 2021, 13, 3415. [Google Scholar] [CrossRef] [PubMed]
- Manouras, T.; Platania, V.; Georgopoulou, A.; Chatzinikolaidou, M.; Vamvakaki, M. Responsive quaternized PDMAEMA copolymers with antimicrobial action. Polymers 2021, 13, 3051. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.F.; Hong, J.W.; Chang, J.H.; Junisu, B.A.; Sun, Y.S. Influence of osmotic pressure on nanostructures in thin films of a weakly-segregated block copolymer and its blends with a homopolymer. Polymers 2021, 13, 2480. [Google Scholar] [CrossRef] [PubMed]
- Wever, D.A.Z.; Picchioni, F.; Broekhuis, A.A. Polymers for enhanced oil recovery: A paradigm for structure-property relationship in aqueous aolution. Prog. Polym. Sci. 2011, 36, 1558. [Google Scholar] [CrossRef]
- Xiong, B.; Loss, R.D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]
- Corrigan, N.; Jung, K.; Moad, G.; Hawker, C.J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): From discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311. [Google Scholar] [CrossRef]
- Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63. [Google Scholar] [CrossRef]
- Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process. Macromolecules 1998, 31, 5559. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living radical polymerization by the RAFT process. Aust. J. Chem. 2009, 62, 1402. [Google Scholar] [CrossRef]
- Parkatzidis, K.; Wang, H.S.; Truong, N.P.; Anastasaki, A. Recent developments and future challenges in controlled radical polymerization: A 2020 update. Chem 2020, 6, 1575. [Google Scholar] [CrossRef]
- Wang, J.S.; Matyjaszewski, K.J. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current status and future perspectives. Macromolecules 2012, 45, 4015. [Google Scholar] [CrossRef]
- Cherupurakal, N.; Mozumder, M.S.; Mourad, A.-H.I.; Lalwani, S. Recent advances in superhydrophobic polymers for antireflective self-cleaning solar panels. Renew. Sust. Energ. Rev. 2021, 151, 111538. [Google Scholar] [CrossRef]
- Abbas, M.; Hachemaoui, A.; Yahiaoui, A.; Mourad, A.-H.I.; Belfedal, A.; Cherupurakal, N. Chemical synthesis of nanocomposites via in-situ polymerization of aniline and iodoaniline using exchanged montmorillonite. Polym. Polym. Compos. 2020, 29, 982. [Google Scholar] [CrossRef]
- Percec, V.; Guliashvili, T.; Ladislaw, J.S.; Wistrand, A.; Stjerndahl, A.; Sienkowska, M.J.; Monteiro, M.J.; Sahoo, S. Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 °C. J. Am. Chem. Soc. 2006, 128, 14156. [Google Scholar] [CrossRef]
- Hawker, C.J.; Bosman, A.W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101, 3661. [Google Scholar] [CrossRef]
- Kwak, Y.; Magenau, A.; Matyjaszewski, K. ARGET ATRP of Methyl Acrylate with Inexpensive Ligands and ppm Concentrations of Catalyst. Macromolecules 2011, 44, 811–819. [Google Scholar] [CrossRef]
- Lligadas, G.; Percec, V. Ultrafast SET-LRP of methyl acrylate at 25 °C in alcohols. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 2745. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Percec, V. Disproportionating versus nondisproportionating solvent effect in the SET-LRP of methyl acrylate during catalysis with nonactivated and activated Cu(0) wire. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 4756. [Google Scholar] [CrossRef]
- Iddon, P.D.; Robinson, K.L.; Armes, S.P. Polymerization of sodium 4-styrenesulfonate via atom transfer radical polymerization in protic media. Polymer 2004, 45, 759. [Google Scholar] [CrossRef]
- Rademacher, J.T.; Baum, M.; Pallack, M.E.; Brittain, W.J.; Simonsick, W.J. Atom transfer radical polymerization of N,N-Dimethylacrylamide. Macromolecules 2000, 33, 284. [Google Scholar] [CrossRef]
- Teodorescu, M.; Matyjaszewski, K. Atom transfer radical polymerization of (Meth)acrylamides. Macromolecules 1999, 32, 4826. [Google Scholar] [CrossRef]
- Teodorescu, M.; Matyjaszewski, K. Controlled polymerization of (Meth)crylamides by atom transfer radical polymerization. Macromol. Rapid Commun. 2000, 21, 190. [Google Scholar] [CrossRef]
- Ye, J.; Narain, R. Water-assisted atom transfer radical polymerization of n-isopropylacrylamide: Nature of solvent and temperature. J. Phys. Chem. B 2009, 113, 676. [Google Scholar] [CrossRef]
- Wever, D.A.Z.; Raffa, P.; Picchioni, F.; Broekhuis, A.A. Acrylamide homopolymers and acrylamide–N-isopropylacrylamide block copolymers by atomic transfer radical polymerization in water. Macromolecules 2012, 45, 4040. [Google Scholar] [CrossRef] [Green Version]
- Lligadas, G.; Grama, S.; Percec, V. Single-electron transfer living radical polymerization platform to practice, develop, and invent. Biomacromolecules 2017, 18, 2981. [Google Scholar] [CrossRef]
- Ding, L.; Li, J.; Jiang, R.Y.; Wang, L.; Song, W.; Zhu, L. Cu(0) wire-mediated single-electron transfer-living radical polymerization of oligo(ethylene oxide) methyl ether acrylate by selecting the optimal reaction conditions. Chin. J. Polym. Sci. 2019, 37, 1130. [Google Scholar] [CrossRef]
- Jiang, X.; Fleischmann, S.; Nguyen, N.H.; Rosen, B.M.; Percec, V. Cooperative and synergistic solvent effects in SET-LRP of MA. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 5591. [Google Scholar] [CrossRef]
- Boyer, C.; Derveaux, A.; Zetterlund, P.B.; Whittaker, M.R. Synthesis of multi-block copolymer stars using a simple iterative Cu(0)-mediated radical polymerization technique. Polym. Chem. 2012, 3, 117. [Google Scholar] [CrossRef]
- Duong, H.T.T.; Marquis, C.P.; Whittaker, M.; Davis, T.P.; Boyer, C. Acid degradable and biocompatible polymeric nanoparticles for the potential codelivery of therapeutic agents. Macromolecules 2011, 44, 8008. [Google Scholar] [CrossRef]
- Soeriyadi, A.H.; Boyer, C.; Nystrom, F.; Zetterlund, P.B.; Whittaker, M.R. High order multi-block copolymers via iterative Cu(0)-mediated radical polymerizations (SET-LRP): Towards biological precision. J. Am. Chem. Soc. 2011, 133, 11128. [Google Scholar] [CrossRef]
- Anastasaki, A.; Waldron, C.; Wilson, P.; Boyer, C.; Zetterlund, P.B.; Whittaker, M.R.; Haddleton, D.M. High molecular weight block copolymers by sequential monomer addition via Cu(0)-mediated living radical polymerization (SET-LRP): An optimized approach. ACS Macro Lett. 2013, 2, 896. [Google Scholar] [CrossRef]
- Zhang, Q.; Anastasaki, A.; Li, G.Z.; Haddleton, A.J.; Wilson, P.; Haddleton, D.M. Multiblock sequence-controlled glycopolymers via Cu (0)-LRP following efficient thiol–halogen, thiol–epoxy and CuAAC reactions. Polym. Chem. 2014, 5, 3876. [Google Scholar] [CrossRef]
- Gody, G.; Maschmeyer, T.; Zetterlund, P.B.; Perrier, S. Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat. Commun. 2013, 4, 2505. [Google Scholar] [CrossRef]
- Gody, G.; Maschmeyer, T.; Zetterlund, P.B.; Perrier, S. Exploitation of the degenerative transfer mechanism in RAFT polymerization for synthesis of polymer of high livingness at full monomer conversion. Macromolecules 2014, 47, 639. [Google Scholar] [CrossRef]
- Zhang, Q.; Wilson, P.; Li, Z.; McHale, R.; Godfrey, J.; Anastasaki, A.; Waldron, C.; Haddleton, D.M. Aqueous copper-mediated living polymerization: Exploiting rapid disproportionation of CuBr with Me6TREN. J. Am. Chem. Soc. 2013, 135, 7355. [Google Scholar] [CrossRef]
- Alsubaie, F.; Alothman, O.; Alshammari, B.; Fouad, H. Facile synthesis of hydrophilic homo-polyacrylamides via Cu(0)-mediated reversible deactivation radical polymerization. Polymers 2021, 13, 1947. [Google Scholar] [CrossRef]
- Alsubaie, F.; Anastasaki, A.; Wilson, P.; Haddleton, D.M. Sequence-controlled multi-block copolymerization of acrylamides via aqueous SET-LRP at 0 °C. Polym. Chem. 2015, 6, 406. [Google Scholar] [CrossRef]
- Simò-Alfonso, E.; Gelfi, C.; Lucisano, M.; Righetti, P.G. Performance of a series of novel n-substituted acrylamides in capillary electrophoresis of DNA fragments. J. Chromatogr. A 1996, 756, 255. [Google Scholar] [CrossRef] [Green Version]
- Albarghouthi, M.N.; Buchholz, B.A.; Doherty, E.A.S.; Bogdan, F.M.; Zhou, H.; Barron, A.E. Impact of polymer hydrophobicity on the properties and performance of DNA sequencing matrices for capillary electrophoresis. Electrophoresis 2002, 23, 1429. [Google Scholar] [CrossRef]
- Albarghouthi, M.N.; Stein, T.M.; Barron, A.E. Poly-N-hydroxyethylacrylamide as a novel, adsorbed coating for protein separation by capillary electrophoresis. Electrophoresis 2003, 24, 1166. [Google Scholar] [CrossRef]
- Tanigami, T.; Iwata, H.; Mori, T. Ion-exchange membrane based on poly(styrene sulfonic acid-co-n-(2-hydroxyethyl) acrylamide). J. Appl. Polym. Sci. 2007, 103, 2788. [Google Scholar] [CrossRef]
- Narumi, A.; Chen, Y.; Sone, M.; Fuchise, K.; Sakai, R.; Satoh, T.; Duan, Q.; Kawaguchi, S.; Kakuchi, T. Poly(N-hydroxyethylacrylamide) prepared by atom transfer radical polymerization as a nonionic, water-soluble, and hydrolysis-resistant polymer and/or segment of block copolymer with a well-defined molecular weight. Macromol. Chem. Phys. 2009, 210, 349. [Google Scholar] [CrossRef]
- Lad, J.; Harrisson, S.; Mantovani, G.; Haddleton, D.M. Copper mediated living radical polymerisation: Interactions between monomer and catalyst. Dalton Trans. 2003, 21, 4175. [Google Scholar] [CrossRef]
- Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-catalyzed living radical polymerization. Chem. Rev. 2001, 101, 3689. [Google Scholar] [CrossRef]
- Ishikawa, T.; Takenaka, A.; Kikuchi, M.; Kobayashi, M.; Takahara, A. Effective Addition of Organic Chloride Salts on Atom Transfer Radical Polymerization in Fluoroalcohols. Macromolecules 2013, 46, 9189–9196. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Shipp, D.A.; Wang, J.L.; Grimaud, T.; Patten, T. Utilizing halide exchange to improve control of atom transfer radical polymerization. Macromolecules 1998, 31, 6836. [Google Scholar] [CrossRef]
- Tsarevsky, N.V.; Pintauer, T.; Matyjaszewski, K. Deactivation efficiency and degree of control over polymerization in ATRP in protic solvents. Macromolecules 2004, 37, 9768. [Google Scholar] [CrossRef]
- Peng, C.; Kong, J.; Seeliger, F.; Matyjaszewski, K. Mechanism of halogen exchange in ATRP. Macromolecules 2011, 44, 7546. [Google Scholar] [CrossRef]
Sequence Distribution | Conv. (%) | Time Per Block (Min) | Mn,th | Mn,SEC | Ð |
---|---|---|---|---|---|
Block 1 | 100 | 20 | 1400 | 4600 | 1.09 |
Block 2 | 100 | 40 | 2500 | 6500 | 1.08 |
Block 3 | 98 | 40 | 3500 | 9700 | 1.09 |
Sequence Distribution | Conv. (%) | Time Per Block (Min) | Mn,th | Mn,SEC | Ð |
---|---|---|---|---|---|
Block 1 | 100 | 2 | 1200 | 3100 | 1.08 |
Block 2 | 100 | 25 | 2400 | 5100 | 1.08 |
Block 3 | 100 | 25 | 3500 | 9500 | 1.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsubaie, F.M.; Alothman, O.Y.; Fouad, H.; Mourad, A.-H.I. ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization. Polymers 2022, 14, 116. https://doi.org/10.3390/polym14010116
Alsubaie FM, Alothman OY, Fouad H, Mourad A-HI. ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization. Polymers. 2022; 14(1):116. https://doi.org/10.3390/polym14010116
Chicago/Turabian StyleAlsubaie, Fehaid M., Othman Y. Alothman, Hassan Fouad, and Abdel-Hamid I. Mourad. 2022. "ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization" Polymers 14, no. 1: 116. https://doi.org/10.3390/polym14010116
APA StyleAlsubaie, F. M., Alothman, O. Y., Fouad, H., & Mourad, A. -H. I. (2022). ABC-Type Triblock Copolyacrylamides via Copper-Mediated Reversible Deactivation Radical Polymerization. Polymers, 14(1), 116. https://doi.org/10.3390/polym14010116