Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Production of PHA
2.2. Essential Oil Extraction
2.3. Nanoparticles Preparation via Microemulsification Method
2.4. Nanoparticles Characterization
2.4.1. Particle Size and Z-Potential
2.4.2. Encapsulation Efficiency and Loading Capacity
2.5. In Vitro Release of EO from PHA Based Nanoparticles
2.6. Scanning Electron Microscopy (SEM)
2.7. Thermal and Structural Characterization
2.8. Study of Antimicrobial Activity of Loaded PHA Nanoparticles
2.9. Statistical Analyses
3. Results
3.1. Encapsulation of Essential Oils in PHA-Based Nanoparticles
3.1.1. PHB-Based Nanoparticles
3.1.2. PHB-HHx Based Nanoparticles
3.2. Morphological, Structural and Thermal Analyses of PHB and PHB-HHx NPs
3.3. In Vitro Analysis of EO Release from PHB and PHB-HHx Loaded NPs
3.4. Assessment of Antimicrobial Activity of EO Loaded Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prakash, B.; Kujur, A.; Yadav, A.; Kumar, A.; Singh, P.P.; Dubey, N.K. Nanoencapsulation: An efficient technology to boost the antimicrobial potential of plant essential oils in food system. Food Control 2018, 89, 1–11. [Google Scholar] [CrossRef]
- Chávez-González, M.L.; López-López, L.I.; Rodríguez-Herrera, R.; Contreras-Esquivel, J.C.; Aguilar, C.N. Enzyme-assisted extraction of citrus essential oil. Chem. Pap. 2016, 70, 412–417. [Google Scholar] [CrossRef]
- Du, E.; Gan, L.; Li, Z.; Wang, W.; Liu, D.; Guo, Y. In Vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J. Anim. Sci. Biotechnol. 2015, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, E.; Lira-Moreno, C.Y.; Guerrero-Legarreta, I.; Wild-Padua, G.; Di Pierro, P.; García-Almendárez, B.E.; Regalado-González, C. Effect of Nanoemulsified and Microencapsulated Mexican Oregano (Lippia graveolens Kunth) Essential Oil Coatings on Quality of Fresh Pork Meat: Mexican oregano essential oil coating. J. Food Sci. 2017, 82, 1423–1432. [Google Scholar] [CrossRef]
- Marchese, A.; Arciola, C.R.; Coppo, E.; Barbieri, R.; Barreca, D.; Chebaibi, S.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M.; Daglia, M. The natural plant compound carvacrol as an antimicrobial and anti-biofilm agent: Mechanisms, synergies and bio-inspired anti-infective materials. Biofouling 2018, 34, 630–656. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, D.; Napoli, E.M.; Cusimano, M.G.; Vitale, M.; Ruberto, G. Origanum vulgare subsp. hirtum Essential Oil Prevented Biofilm Formation and Showed Antibacterial Activity against Planktonic and Sessile Bacterial Cells. J. Food Prot. 2013, 76, 1747–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Donsì, F.; Annunziata, M.; Vincensi, M.; Ferrari, G. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier. J. Biotechnol. 2012, 159, 342–350. [Google Scholar] [CrossRef]
- Almadiy, A.A.; Nenaah, G.E.; Al Assiuty, B.A.; Moussa, E.A.; Mira, N.M. Chemical composition and antibacterial activity of essential oils and major fractions of four Achillea species and their nanoemulsions against foodborne bacteria. LWT-Food Sci. Technol. 2016, 69, 529–537. [Google Scholar] [CrossRef]
- Alhaj, N.A.; Shamsudin, M.N.; Alipiah, N.M.; Zamri, H.F.; Bustamam, A.; Ibrahim, S.; Abdullah, R. Characterization of Nigella Sativa, L. Essential Oil-Loaded Solid Lipid Nanoparticles. Am. J. Pharmacol. Toxicol. 2010, 5, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Detoni, C.B.; de Oliveira, D.M.; Santo, I.E.; Pedro, A.S.; El-Bacha, R.; da Silva Velozo, E.; Ferreira, D.; Sarmento, B.; de Magalhães Cabral-Albuquerque, E.C. Evaluation of thermal-oxidative stability and antiglioma activity of Zanthoxylum tingoassuiba essential oil entrapped into multi- and unilamellar liposomes. J. Liposome Res. 2012, 22, 1–7. [Google Scholar] [CrossRef]
- Ayres Cacciatore, F.; Dalmás, M.; Maders, C.; Ataíde Isaía, H.; Brandelli, A.; da Silva Malheiros, P. Carvacrol encapsulation into nanostructures: Characterization and antimicrobial activity against foodborne pathogens adhered to stainless steel. Food Res. Int. 2020, 133, 109143. [Google Scholar] [CrossRef] [PubMed]
- Granata, G.; Stracquadanio, S.; Leonardi, M.; Napoli, E.; Consoli, G.M.L.; Cafiso, V.; Stefani, S.; Geraci, C. Essential oils encapsulated in polymer-based nanocapsules as potential candidates for application in food preservation. Food Chem. 2018, 269, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Turco, R.; Santagata, G.; Corrado, I.; Pezzella, C.; Di Serio, M. In Vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Front. Bioeng. Biotechnol. 2021, 8, 619266. [Google Scholar] [CrossRef]
- Mojaveryazdia, F.S.; Zainb, N.A.B.M.; Rezania, S. Production of biodegradable polymers (PHA) through low cost carbon sources:Green Chemistry. Int. J. Chem. Environ. Eng. 2012, 4, 185–189. [Google Scholar]
- Sabbagh, F.; Muhamad, I.I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sustain. Energy Rev. 2017, 72, 95–104. [Google Scholar] [CrossRef]
- Chanprateep, S.; Buasri, K.; Muangwong, A.; Utiswannakul, P. Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym. Degrad. Stab. 2010, 95, 2003–2012. [Google Scholar] [CrossRef]
- Murueva, A.V.; Shishatskaya, E.I.; Kuzmina, A.M.; Volova, T.G.; Sinskey, A.J. Microparticles prepared from biodegradable polyhydroxyalkanoates as matrix for encapsulation of cytostatic drug. J. Mater. Sci. Mater. Med. 2013, 24, 1905–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naureen, R.; Tariq, M.; Yusoff, I.; Chowdhury, A.J.K.; Ashraf, M.A. Synthesis, spectroscopic and chromatographic studies of sunflower oil biodiesel using optimized base catalyzed methanolysis. Saudi J. Biol. Sci. 2015, 22, 332–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastav, A.; Kim, H.-Y.; Kim, Y.-R. Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System. BioMed Res. Int. 2013, 2013, 581684. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, M.; Xiao, X.; Zhang, B.; Xie, Q.; Xu, X.; Li, S.; Zheng, Z.; Wei, D.; Zhang, X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale 2020, 12, 10799–10808. [Google Scholar] [CrossRef]
- Corrado, I.; Abdalrazeq, M.; Pezzella, C.; Di Girolamo, R.; Porta, R.; Sannia, G.; Giosafatto, C.V.L. Design and characterization of poly (3-hydroxybutyrate-co-hydroxyhexanoate) nanoparticles and their grafting in whey protein-based nanocomposites. Food Hydrocoll. 2021, 110, 106167. [Google Scholar] [CrossRef]
- Hernández-Hernández, E.; Regalado-González, C.; Vázquez-Landaverde, P.; Guerrero-Legarreta, I.; García-Almendárez, B.E. Microencapsulation, Chemical Characterization, and Antimicrobial Activity of Mexican (Lippia graveolens H.B.K.) and European (Origanum vulgare L.) Oregano Essential Oils. Sci. World J. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Budde, C.F.; Riedel, S.L.; Hübner, F.; Risch, S.; Popović, M.K.; Rha, C.; Sinskey, A.J. Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl. Microbiol. Biotechnol. 2011, 89, 1611–1619. [Google Scholar] [CrossRef] [PubMed]
- Corrado, I.; Cascelli, N.; Ntasi, G.; Birolo, L.; Sannia, G.; Pezzella, C. Optimization of Inulin Hydrolysis by Penicillium lanosocoeruleum Inulinases and Efficient Conversion into Polyhydroxyalkanoates. Front. Bioeng. Biotechnol. 2021, 9, 616908. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Chen, J.; Huang, L.; Lai, H.; Lu, C.; Fang, M.; Zhang, Q.; Luo, X. Methotrexate-Loaded PEGylated Chitosan Nanoparticles: Synthesis, Characterization, and in Vitro and in Vivo Antitumoral Activity. Mol. Pharm. 2014, 11, 2213–2223. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Souza, A.G.; Rosa, D.S. Essential oil-loaded nanocapsules and their application on PBAT biodegradable films. J. Mol. Liq. 2021, 337, 116488. [Google Scholar] [CrossRef]
- Musyanovych, A.; Schmitz-Wienke, J.; Mailänder, V.; Walther, P.; Landfester, K. Preparation of Biodegradable Polymer Nanoparticles by Miniemulsion Technique and Their Cell Interactions. Macromol. Biosci. 2008, 8, 127–139. [Google Scholar] [CrossRef]
- Landfester, K. Polyreactions in Miniemulsions. Macromol. Rapid Commun. 2001, 22, 896–936. [Google Scholar] [CrossRef]
- Song, K.C.; Lee, H.S.; Choung, I.Y.; Cho, K.I.; Ahn, Y.; Choi, E.J. The effect of type of organic phase solvents on the particle size of poly(D,L-lactide-co-glycolide) nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2006, 276, 162–167. [Google Scholar] [CrossRef]
- Tadros, T.F. (Ed.) Emulsion Science and Technology, 1st ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-3-527-32525-2. [Google Scholar]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M.A.; Azizi, M.H. Nanoencapsulation Approach to Improve Antimicrobial and Antioxidant Activity of Thyme Essential Oil in Beef Burgers during Refrigerated Storage. Food Bioprocess Technol. 2016, 9, 1187–1201. [Google Scholar] [CrossRef]
- Cornibert, J.; Mabchessault, R.H. Physical properties of poly-β-hydroxybutyrate. J. Mol. Biol. 1972, 71, 735–756. [Google Scholar] [CrossRef]
- Malekjani, N.; Jafari, S.M. Modeling the release of food bioactive ingredients from carriers/nanocarriers by the empirical, semiempirical, and mechanistic models. Compr. Rev. Food Sci. Food Saf. 2021, 20, 3–47. [Google Scholar] [CrossRef]
- Kim, H.; Fassihi, R. Application of Binary Polymer System in Drug Release Rate Modulation. 2. Influence of Formulation Variables and Hydrodynamic Conditions on Release Kinetics. J. Pharm. Sci. 1997, 86, 323–328. [Google Scholar] [CrossRef]
- Soares, P.I.P.; Sousa, A.I.; Silva, J.C.; Ferreira, I.M.M.; Novo, C.M.M.; Borges, J.P. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydr. Polym. 2016, 147, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.-C.; Yao, Y.-C.; Zhan, X.-Y.; Chen, G.-Q. Application of Polyhydroxyalkanoates Nanoparticles as Intracellular Sustained Drug-Release Vectors. J. Biomater. Sci. Polym. Ed. 2010, 21, 127–140. [Google Scholar] [CrossRef]
- Samrot, A.V.; Samanvitha, S.K.; Shobana, N.; Renitta, E.R.; Senthilkumar, P.; Kumar, S.S.; Abirami, S.; Dhiva, S.; Bavanilatha, M.; Prakash, P.; et al. The Synthesis, Characterization and Applications of Polyhydroxyalkanoates (PHAs) and PHA-Based Nanoparticles. Polymers 2021, 13, 3302. [Google Scholar] [CrossRef] [PubMed]
- Faisalina, A.F.; Sonvico, F.; Colombo, P.; Amirul, A.A.; Wahab, H.A.; Majid, M.I.A. Docetaxel-Loaded Poly(3HB-co-4HB) Biodegradable Nanoparticles: Impact of Copolymer Composition. Nanomaterials 2020, 10, 2123. [Google Scholar] [CrossRef] [PubMed]
- Musumeci, T.; Cupri, S.; Bonaccorso, A.; Impallomeni, G.; Ballistreri, A.; Puglisi, G.; Pignatello, R. Technology assessment of new biodegradable poly(R-3-hydroxybutyrate- co -1,4-butylene adipate) copolymers for drug delivery. J. Appl. Polym. Sci. 2019, 136, 47233. [Google Scholar] [CrossRef]
- Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009, 112, 77–83. [Google Scholar] [CrossRef]
Trial | SDS (mg mL−1) | PHB (mg mL−1) | A/O Phase | mgEO/mgPHB | d. (nm) | PDI | Z-Pot (mV) |
---|---|---|---|---|---|---|---|
S1 | 2.2 | 5 | 20 | - | 172.4 ± 8.6 a,b | 0.29 ± 0.04 a,b | −40.1 ± 0.9 c,d,e |
S2 | 4.44 | 5 | 20 | - | 115.3 ± 10.0 a | 0.23 ± 0.03 a | −62.2 ± 8.5 a |
S3 | 2.2 | 5 | 20 | 1 | 459.8 ± 51.1 a,b | 0.62 ± 0.21 b | −18.2 ± 0.4 f |
S4 | 2.2 | 5 | 20 | 0.5 | 248.3 ± 51.1 a,b | 0.49 ± 0.21 b | −16.5 ± 0.4 f |
S5 | 4.44 | 5 | 20 | 1 | 541.6 ± 383.9 c | 0.80 ± 0.17 c | −18.7 ± 8.5 f |
S6 | 4.44 | 5 | 20 | 0.5 | 357.4 ± 68.3 b,c | 0.46 ± 0.06 b | −18.2 ± 4.4 f |
S7 | 2.2 | 5 | 8 | - | 120.7 ± 2.8 a | 0.41 ± 0.11 b | −35.1 ± 0.2 e |
S8 | 2.2 | 5 | 8 | 1 | 127.3 ± 1.1 a | 0.23 ± 0.03 a | −36.1 ± 1.4 d,e |
S9 | 2.2 | 5 | 2 | - | 112.7 ± 1.3 a | 0.13 ± 0.01 a | −45.5 ± 7.6 c,d |
S10 | 2.2 | 5 | 2 | 1 | 128.0 ± 5.8 a | 0.15 ± 0.03 a | −50.6 ± 3.5 b,c |
S11 | 2.2 | 5 | 2 | 0.5 | 141.4 ± 2.6 a | 0.17 ± 0.02 a | −55.0 ± 2.6 a,b |
S12 | 2.2 | 10 | 2 | - | 152.8 ± 6.8 a | 0.19 ± 0.04 a | −41.4 ± 1.2 d,e |
S13 | 2.2 | 10 | 2 | 1 | 156.4 ± 1.7 a | 0.16 ± 0.01 a | −44.9 ± 3.7 d,e |
S14 | 2.2 | 10 | 2 | 0.5 | 113.1 ± 1.7 a | 0.12 ± 0.02 a | −37.1 ± 2.4 c,d |
Trial | SDS (mg mL−1) | PHB-HHx (mg mL−1) | A/O Phase | mgEO/mgPHBHHx | d. (nm) | PDI | Z-Pot (mV) |
---|---|---|---|---|---|---|---|
H1 | 2.2 | 10 | 2 | - | 174.6 ± 2.2 a,b | 0.09 ± 0.03 a | −35.5 ± 0.3 a |
H2 | 2.2 | 10 | 2 | 1 | 180.0 ± 11.0 a,b | 0.18 ± 0.01 b | −40.4 ± 2.2 a,b,c |
H3 | 2.2 | 10 | 2 | 0.5 | 196.4 ± 18.1 b,c | 0.24 ± 0.01 c | −45.7 ± 5.4 c,d |
H4 | 4.4 | 10 | 2 | - | 166.6 ± 2.1 a | 0.09 ± 0.01 a | −38.2 ± 0.9 a,b |
H5 | 4.4 | 10 | 2 | 1 | 174.2 ± 1.2 a | 0.12 ± 0.02 a,b | −44.2 ± 1.2 b,c,d |
H6 | 4.4 | 10 | 2 | 0.5 | 175.3 ± 3.3 a,b | 0.14 ± 0.02 a,b | −41.2 ± 0.4 a,b,c,d |
H7 | 4.4 | 20 | 2 | - | 172.2 ± 0.4 a | 0.10 ± 0.01 a | −40.4 ± 1.5 a,b,c |
H8 | 4.4 | 20 | 2 | 1 | 210.2 ± 3.2 c | 0.12 ± 0.02 a,b | −47.4 ± 3.2 d |
H9 | 4.4 | 20 | 2 | 0.5 | 182.3 ± 4.4 a,b | 0.11 ± 0.04 a | −46.4 ± 1.8 c,d |
Medium | Korsmeyer-Peppas Parameters | |||||
---|---|---|---|---|---|---|
PHB NPs | PHB-HHx NPs | |||||
R2 | K1 | n | R2 | K1 | n | |
FS_A | 0.90 | 19.96 | 0.31 | 0.91 | 19.57 | 0.33 |
FS_B | 0.86 | 11.97 | 0.23 | 0.91 | 11.75 | 0.33 |
FS_C | 0.98 | 10.58 | 0.57 | 0.91 | 25.58 | 0.35 |
Water | 0.90 | 8.89 | 0.17 | 0.89 | 17.03 | 0.28 |
MIC (mg mL−1) | MBC (mg mL−1) | |
---|---|---|
EO | 0.2 | 0.3 |
EO loaded PHB-NPs | 0.5 (EO, 0.25) | 1 (EO, 0.51) |
EO loaded PHB-HHx-NPs | 0.25 (EO, 0.11) | 0.4 (EO, 0.18) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrado, I.; Di Girolamo, R.; Regalado-González, C.; Pezzella, C. Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers 2022, 14, 166. https://doi.org/10.3390/polym14010166
Corrado I, Di Girolamo R, Regalado-González C, Pezzella C. Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers. 2022; 14(1):166. https://doi.org/10.3390/polym14010166
Chicago/Turabian StyleCorrado, Iolanda, Rocco Di Girolamo, Carlos Regalado-González, and Cinzia Pezzella. 2022. "Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers" Polymers 14, no. 1: 166. https://doi.org/10.3390/polym14010166
APA StyleCorrado, I., Di Girolamo, R., Regalado-González, C., & Pezzella, C. (2022). Polyhydroxyalkanoates-Based Nanoparticles as Essential Oil Carriers. Polymers, 14(1), 166. https://doi.org/10.3390/polym14010166