Non-Woven Sheet Containing Gemcitabine: Controlled Release Complex for Pancreatic Cancer Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. Cell Lines
2.3. Animals
2.4. Preparation of GEM-Containing Non-Woven Sheets
2.5. Measurement of GEM Release In Vitro
2.6. Measurement of GEM Release In Vivo
2.7. In Vitro Cytotoxicity Assay
2.8. Antitumor Efficacy of the GEM-Containing Non-woven Sheets in a Subcutaneous Tumor-Bearing Mouse Model
2.9. Statistical Analyses
3. Results
3.1. Preparation of GEM-Containing Non-woven Sheets
3.2. Measurement of GEM Release from GEM-Containing Non-woven Sheets
3.3. In Vitro Cytotoxicity Assay
3.4. Antitumor Efficacy of GEM-Containing Non-woven Sheets in Panc02 Tumor Cell-Bearing Mice
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bengtsson, A.; Andersson, R.; Ansari, D. The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. Sci. Rep. 2020, 10, 16425. [Google Scholar] [CrossRef] [PubMed]
- Tummers, W.S.; Groen, J.V.; Sibinga Mulder, B.G.; Farina-Sarasqueta, A.; Morreau, J.; Putter, H.; van de Velde, C.J.; Vahrmeijer, A.L.; Bonsing, B.A.; Mieog, J.S.; et al. Impact of resection margin status on recurrence and survival in pancreatic cancer surgery. Br. J. Surg. 2019, 106, 1055–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.P.; Psarelli, E.E.; Jackson, R.; Ghaneh, P.; Halloran, C.M.; Palmer, D.H.; Campbell, F.; Valle, J.W.; Faluyi, O.; O’Reilly, D.A.; et al. European Study Group for Pancreatic Cancer, Patterns of recurrence after resection of pancreatic ductal adenocarcinoma: A secondary analysis of the ESPAC-4 randomized adjuvant chemotherapy trial. JAMA Surg. 2019, 154, 1038–1048. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Yoshitomi, H.; Shimizu, H.; Ohtsuka, M.; Yoshidome, H.; Furukawa, K.; Takayasiki, T.; Kuboki, S.; Okamura, D.; Suzuki, D.; et al. Repeat pancreatectomy for pancreatic ductal cancer recurrence in the remnant pancreas after initial pancreatectomy: Is it worthwhile? Surgery 2014, 155, 58–66. [Google Scholar] [CrossRef]
- Neoptolemos, J.P.; Stocken, D.D.; Friess, H.; Bassi, C.; Dunn, J.A.; Hickey, H.; Beger, H.; Fernandez-Cruz, L.; Dervenis, C.; Lacaine, F.; et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 2004, 350, 1200–1210. [Google Scholar] [CrossRef] [Green Version]
- Lucas, S.C.; Gisele, M. Gemcitabine: Metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol 2014, 741, 8–16. [Google Scholar]
- Ruiz van Haperen, V.W.; Veerman, G.; Noordhuis, P.; Vermorken, J.B.; Peters, G.J. Concentration and time dependent growth inhibition and metabolism in vitro by 2′,2′-difluoro-deoxycytidine (gemcitabine). Adv. Exp. Med. Biol. 1991, 309a, 57–60. [Google Scholar]
- Hanauske, A.R.; Degen, D.; Marshall, M.H.; Hilsenbeck, S.G.; Grindey, G.B.; Von Hoff, D.D. Activity of 2′,2′-difluorodeoxycytidine (gemcitabine) against human tumor colony forming units. Anticancer Drugs 1992, 3, 143–146. [Google Scholar] [CrossRef]
- Kornmann, M.; Butzer, U.; Blatter, J.; Beger, H.G.; Link, K.H. Pre-clinical evaluation of the activity of gemcitabine as a basis for regional chemotherapy of pancreatic and colorectal cancer. Eur. J. Surg. Oncol. 2000, 26, 583–587. [Google Scholar] [CrossRef]
- Anupama, M.; Deepak, C.; Stephan, W.B.; Ram, I.M. Efficacy of gemcitabine conjugated and miRNA-205 complexed micelles for treatment of advanced pancreatic cancer. Biomaterials 2014, 35, 7077–7087. [Google Scholar]
- Martin, R.C.; Robbins, K.; Tomalty, D.; O’Hara, R.; Bosnjakovic, P.; Padr, R.; Rocek, M.; Slauf, F.; Scupchenko, A.; Tatum, C. Transarterial chemoembolisation (TACE) using irinotecan-loaded beads for the treatment of unresectable metastases to the liver in patients with colorectal cancer: An interim report. World J. Surg. Oncol. 2009, 7, 80. [Google Scholar] [CrossRef] [Green Version]
- Okino, H.; Maeyama, R.; Manabe, T.; Matsuda, T.; Tanaka, M. Trans-tissue, sustained release of gemcitabine from photocured gelatin gel inhibits the growth of heterotopic human pancreatic tumor in nude mice. Clin. Cancer Res. 2003, 9, 5786. [Google Scholar]
- Ishikawa, T.; Kokura, S.; Sakamoto, N.; Ando, T.; Imamoto, E.; Hattori, T.; Oyamada, H.; Yoshinami, N.; Sakamoto, M.; Kitagawa, K.; et al. Phase II trial of combined regional hyperthermia and gemcitabine for locally advanced or metastatic pancreatic cancer. Int. J. Hyperth. 2012, 28, 597–604. [Google Scholar] [CrossRef] [PubMed]
- Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J.H. Nanostructured fibers via electrospinning. Adv. Mater. 2001, 13, 70–72. [Google Scholar] [CrossRef]
- Zeng, J.; Yang, L.; Liang, Q.; Zhang, X.; Guan, H.; Xu, X.; Chen, X.; Jing, X. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Control. Release 2005, 105, 43–51. [Google Scholar] [CrossRef]
- You, Y.; Min, B.-M.; Lee, S.J.; Lee, T.S.; Park, W.H. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). J. Appl. Polym. Sci. 2005, 95, 193–200. [Google Scholar] [CrossRef]
- Gamblin, T.; Egorin, M.; Zuhowski, E.; Lagattuta, T.; Herscher, L.; Russo, A.; Libutti, S.; Alexander, H.; Dedrick, R.; Bartlett, D. Intraperitoneal gemcitabine pharmacokinetics: A pilot and pharmacokinetic study in patients with advanced adenocarcinoma of the pancreas. Cancer Chemother. Pharmacol. 2008, 62, 647–653. [Google Scholar] [CrossRef]
- Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Haoqing, H.; Schaper, A.; Wendorff, J.H.; Greiner, A. Poly-L-lactide nanofibers by electrospinning-Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 2003, 3, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, H.; Kidokoro, Y.; Mochizuki, M. Enzymatic degradation of biodegradable polyester composites of poly(L-lactic acid) and poly(ε-caprolactone). Macromol. Mater. Eng. 2006, 291, 1245–1254. [Google Scholar] [CrossRef]
- Zeng, J.; Chen, X.; Liang, Q.; Xu, X.; Jing, X. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers. Macromol. Biosci. 2004, 4, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Leuner, C.; Dressman, J. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef]
- Verreck, G.; Chun, I.; Rosenblatt, J.; Peeters, J.; Dijck, A.V.; Mensch, J.; Noppe, M.; Brewster, M.E. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J. Control. Release 2003, 92, 349–360. [Google Scholar] [CrossRef]
- MacDonald, R.T.; McCarthy, S.P.; Gross, R.A. Enzymatic degradability of poly(lactide): Effects of chain stereochemistry and material crystallinity. Macromolecules 1996, 29, 7356–7361. [Google Scholar] [CrossRef]
- Keyes, K.; Cox, K.; Treadway, P.; Mann, L.; Shih, C.; Faul, M.M.; Teicher, B.A. An in vitro tumor model: Analysis of angiogenic factor expression after chemotherapy. Cancer Res. 2002, 62, 5597–5602. [Google Scholar]
- Bota, D.A.; Desjardins, A.; Quinn, J.A.; Affronti, M.L.; Friedman, H.S. Interstitial chemotherapy with biodegradable BCNU (Gliadel) wafers in the treatment of malignant gliomas. Ther. Clin. Risk Manag. 2007, 3, 707–715. [Google Scholar] [PubMed]
- Ene, C.I.; Nerva, J.D.; Morton, R.P.; Barkley, A.S.; Barber, J.K.; Ko, A.L.; Silbergeld, D.L. Safety and efficacy of carmustine (BCNU) wafers for metastatic brain tumors. Surg. Neurol. Int. 2016, 7 (Suppl. 11), S295–S299. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakura, K.; Sasai, M.; Mino, T.; Uyama, H. Non-Woven Sheet Containing Gemcitabine: Controlled Release Complex for Pancreatic Cancer Treatment. Polymers 2022, 14, 168. https://doi.org/10.3390/polym14010168
Sakura K, Sasai M, Mino T, Uyama H. Non-Woven Sheet Containing Gemcitabine: Controlled Release Complex for Pancreatic Cancer Treatment. Polymers. 2022; 14(1):168. https://doi.org/10.3390/polym14010168
Chicago/Turabian StyleSakura, Kazuma, Masao Sasai, Takayuki Mino, and Hiroshi Uyama. 2022. "Non-Woven Sheet Containing Gemcitabine: Controlled Release Complex for Pancreatic Cancer Treatment" Polymers 14, no. 1: 168. https://doi.org/10.3390/polym14010168
APA StyleSakura, K., Sasai, M., Mino, T., & Uyama, H. (2022). Non-Woven Sheet Containing Gemcitabine: Controlled Release Complex for Pancreatic Cancer Treatment. Polymers, 14(1), 168. https://doi.org/10.3390/polym14010168