Composite Nanocellulose Fibers-Based Hydrogels Loading Clindamycin HCl with Ca2+ and Citric Acid as Crosslinking Agents for Pharmaceutical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CNFs-Based Hydrogels
2.3. CNFs-Based Hydrogels Characterizations
2.3.1. Morphological Characterizations
2.3.2. CNFs-Based Hydrogels Thickness
2.3.3. Mechanical Strength Test of CNFs-Based Hydrogels
2.3.4. Gel Content
2.3.5. Swelling Ratio
2.4. Cell Culture
2.5. Cell Viability Assay
2.6. CM Loading Content
2.7. In Vitro Drug Release Profile and Release Kinetic
2.8. Statistical Analysis
3. Results
3.1. Preparation and Morphological Characteristics of CNFs-Based Hydrogels
3.2. Mechanical Properties of CNFs-Based Hydrogels
3.3. Gel Content and Swelling Properties of CNFs-Based Hydrogels
3.4. Effects of CNFs-Based Hydrogels on Cell Viability of HaCaT Cells
3.5. Drug Content and CNFs-Based Hydrogels Containing CM Characteristics
3.6. CM Release Profile and Kinetic
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ullaha, W.; Ul-Islam, M.; Khan, S.; Kim, Y.; Park, J.K. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr. Polym. 2016, 136, 908–916. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef] [PubMed]
- Eyley, S.; Thielemans, W. Surface modification of cellulose nanocrystals. Nanoscale 2014, 6, 7764–7779. [Google Scholar] [CrossRef] [Green Version]
- Lin, N.; Dufresne, A. Nanocellulose in biomedicine: Current status and future prospect. Eur. Polym. J. 2014, 59, 302–325. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z.; Gao, X.; Ullah, M.W.; Li, S.; Wang, Q.; Yang, G. Electroconductive natural polymer-based hydrogels. Biomaterials 2016, 111, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Tejado, A.; Alam, M.N.; Antal, M.; Yang, H.; van de Ven, T.G.M. Energy requirements for the disintegration of cellulose fibers into cellulose nanofibers. Cellulose 2012, 19, 831–842. [Google Scholar] [CrossRef]
- Chu, Y.; Sun, Y.; Wu, W.; Xiao, H. Dispersion Properties of Nanocellulose: A Review. Carbohydr. Polym. 2020, 250, 116892. [Google Scholar] [CrossRef]
- Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Youngblood, J. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.H.; Wang, Q.Q.; Hirth, K.; Baez, C.; Agarwal, U.P.; Zhu, J.Y. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 2015, 22, 1753–1762. [Google Scholar] [CrossRef]
- Liu, J.; Chinga-Carrasco, G.; Cheng, F.; Xu, W.; Willför, S.; Syverud, K.; Xu, C. Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose 2016, 23, 3129–3143. [Google Scholar] [CrossRef]
- Yang, J.; Xu, F.; Han, C.R. Metal ion mediated cellulose nanofibrils transient network in covalently crosslinked hydrogels: Mechanistic insight into morphology and dynamics. Biomacromolecules 2017, 18, 1019–1028. [Google Scholar] [CrossRef]
- Orasugha, J.T.; Saha, N.R.; Rana, D.; Sarkar, G.; Mollick, M.R.; Chattoapadhyay, A.; Mitra, B.C.; Mondal, D.; Ghosh, S.K.; Chattopadhyay, D. Jute cellulose nano-fibrils/hydroxypropylmethylcellulose nanocomposite: A novel material with potential for application in packaging and transdermal drug delivery system. Ind. Crops Prod. 2018, 112, 633–643. [Google Scholar] [CrossRef]
- Carlström, I.E.; Rashad, A.; Campodoni, E.; Sandri, M.; Syverud, K.; Bolstad, A.I.; Mustafa, K. Crosslinked gelatin-nanocellulose scaffolds for bone tissue engineering. Mater. Lett. 2020, 264, 127326. [Google Scholar] [CrossRef]
- Kim, J.O.; Choi, J.Y.; Park, J.K.; Kim, J.H.; Jin, S.G.; Chang, S.W.; Li, D.X.; Hwang, M.-R.; Woo, J.S.; Kim, J.-A.; et al. Development of Clindamycin-Loaded Wound Dressing with Polyvinyl Alcohol and Sodium Alginate. Biol. Pharm. Bull. 2008, 31, 2277–2282. [Google Scholar] [CrossRef] [Green Version]
- Chaiwarit, T.; Rachtanapun, P.; Kantrong, N.; Jantrawut, P. Preparation of clindamycin hydrochloride loaded de-esterified low-methoxyl mango peel pectin film used as a topical drug delivery system. Polymers 2020, 12, 1006. [Google Scholar] [CrossRef] [PubMed]
- Gulrez, S.K.H.; Al-Assaf, S.; Phillips, G.O. Hydrogels: Methods of preparation, characterisation and applications. In Progress in Molecular and Environmental Bioengineering from Analysis and Modeling to Technology Applications; Carpi, A., Ed.; Janeza Trdine: Rijeka, Croatia, 2011; Volume 9, pp. 117–151. [Google Scholar]
- Lungu, A.; Cernencu, A.I.; Dinescu, S.; Balahura, R.; Mereuta, P.; Costache, M.; Syverud, K.; Stancu, I.C.; Iovu, H. Nanocellulose-enriched hydrocolloid-based hydrogels designed using a Ca2+ free strategy based on citric acid. Mater. Des. 2021, 197, 109200. [Google Scholar] [CrossRef]
- Siqueira, P.; Siqueira, É.; de Lima, A.; Siqueira, G.; Pinzón-Garcia, A.; Lopes, A.; Segura, M.; Isaac, A.; Pereira, F.; Botaro, V. Three-Dimensional Stable Alginate-Nanocellulose Gels for Biomedical Applications: Towards Tunable Mechanical Properties and Cell Growing. Nanomaterials 2019, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Kheawfu, K.; Kaewpinta, A.; Chanmahasathien, W.; Rachtanapun, P.; Jantrawut, P. Extraction of nicotine from tobacco leaves and development of fast dissolving nicotine extract film. Membranes 2021, 11, 403. [Google Scholar] [CrossRef]
- Rosiak, M.T.; Darmawan, D.; Zainuddin, S. Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiat. Phys. Chem. 2001, 62, 107–113. [Google Scholar]
- Mok, C.F.; Ching, Y.C.; Abu Osman, N.A.; Muhamad, F.; Mohd Junaidi, M.U.; Choo, J.H. Preparation and characterization study on maleic acid crosslinked poly(vinyl alcohol)/chitin/nanocellulose composites. J. Appl. Polym. Sci. 2020, 137, 49044. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Mohanty, M.; Umashankar, P.; Jayakrishnan, A. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 2005, 26, 6335–6342. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Hong, S.R.; Lee, Y.M.; Song, K.W.; Park, M.H.; Nam, Y.S. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 1999, 20, 409–417. [Google Scholar] [CrossRef]
- Bajpai, S.K.; Sharma, S. Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym. 2004, 59, 129–140. [Google Scholar] [CrossRef]
- Lönnqvist, S.; Emanuelsson, P.; Kratz, G. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds. J. Plast. Surg. Hand Surg. 2015, 49, 346–352. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in drug delivery: Progress and challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N.; Cao, J.; Lee, J.; Kim, H.; Yoo, J.-W. Development of clindamycin-loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA-infected wounds. J. Pharm. Investig. 2021, 51, 597–610. [Google Scholar] [CrossRef]
- Lee, J.; Hlaing, S.P.; Cao, J.; Hasan, N.; Ahn, H.-J.; Song, K.-W.; Yoo, J.-W. In situ hydrogel-forming/nitric oxide-releasing wound dressing for enhanced antibacterial activity and healing in mice with infected wounds. Pharmaceutics 2019, 11, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J. Control. Release. 2011, 154, 2–19. [Google Scholar] [CrossRef]
- Tiwari, S.B.; Murthy, T.K.; Raveendra Pai, M.; Mehta, P.R.; Chowdary, P.B. Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system. AAPS PharmSciTech 2003, 4, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Maheswari, K.M.; Devineni, P.K.; Deekonda, S.; Shaik, S.; Uppala, N.P.; Nalluri, B.N. Development and Evaluation of Mouth Dissolving Films of Amlodipine Besylate for Enhanced Therapeutic Efficacy. J. Pharm. 2014, 2014, 520949. [Google Scholar] [CrossRef]
- Mario, G.; Gabriele, G. Mathematical Modelling and Controlled Drug Delivery: Matrix Systems. Curr. Drug Deliv. 2005, 2, 97–116. [Google Scholar]
Mass Ratio | Polymer Composition/40 g | Sample Code | ||||
---|---|---|---|---|---|---|
CNFs | LMP | SA | Calcium Crosslinking | Calcium and Citric Acid Crosslinking | Citric Acid Crosslinking | |
1:1:1 | 0.4 | 0.4 | 0.4 | C1P1A1/Ca | C1P1A1/Ca + Ci | C1P1A1/Ci |
2:0.5:0.5 | 0.8 | 0.2 | 0.2 | C2P0.5A0.5/Ca | C2P0.5A0.5/Ca + Ci | C2P0.5A0.5/Ci |
0.5:2:0.5 | 0.2 | 0.8 | 0.2 | C 0.5 P2A0.5/Ca | C 0.5 P2A0.5/Ca + Ci | C 0.5 P2A0.5/Ci |
0.5:0.5:2 | 0.2 | 0.2 | 0.8 | C0.5P0.5 A2/Ca | C0.5P0.5 A2/Ca + Ci | C0.5P0.5 A2/Ci |
Formulations | Thickness (mm) | Puncture Strength (N/mm2) | Young’s Modulus (N/mm2) |
---|---|---|---|
C1P1A1/Ca | 6.896 ± 0.520 a | 0.827 ± 0.058 a | 0.159 ± 0.004 a |
C1P1A1/Ca + Ci | 3.370 ± 0.187 b | 0.602 ± 0.034 b | 0.110 ± 0.007 a |
C1P1A1/Ci | 3.464 ± 0.324 b | 0.115 ± 0.006 c | 0.053 ± 0.002 b |
C2P0.5A0.5/Ca | 5.109± 0.382 a | 0.384 ± 0.008 d | 0.068 ± 0.014 b |
C2P0.5A0.5/Ca + Ci | 3.470 ± 0.109 b | 0.228 ± 0.008 e | 0.066 ± 0.002 b |
C2P0.5A0.5/Ci | 3.376 ± 0.075 b | 0.063 ± 0.003 f | 0.038 ± 0.002 c |
Formulations | Drug Content (%) | Gel Content (%) | MSD (%) | ||
---|---|---|---|---|---|
DI | PBS | DI | PBS | ||
C1P1A1/Ca + Ci/CM | 83.21 ± 2.42 a | 24.94 ± 8.31 a | 23.71 ± 2.02 a | 522.22 ± 188.80 a | 472.51 ± 30.98 a |
C2P0.5A0.5/Ca + Ci/CM | 94.21 ± 4.05 b | 21.54 ± 0.43 a | 25.50 ± 0.79 a | 345.04 ± 55.74 b | 350.18 ± 18.48 b |
Kinetic Models | Parameters | Samples | |
---|---|---|---|
C1P1A1/Ca + Ci/CM | C2P0.5A0.5/Ca + Ci/CM | ||
Zero-oder | R2 | 0.9004 | 0.9247 |
k0 (h−1) | 17.1810 | 17.8590 | |
First order | R2 | 0.7244 | 0.7673 |
k1 (h−1) | 7.0787 | 13.6510 | |
Higuchi | R2 | 0.9960 | 0.9839 |
kH (h1/2) | 18.3460 | 13.550 | |
Korsemeyer-Peppas | R2 | 0.8981 | 0.9423 |
k(h−n) | 0.0598 | 0.0361 | |
n | 0.8020 | 0.8466 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O-chongpian, P.; Na Takuathung, M.; Chittasupho, C.; Ruksiriwanich, W.; Chaiwarit, T.; Baipaywad, P.; Jantrawut, P. Composite Nanocellulose Fibers-Based Hydrogels Loading Clindamycin HCl with Ca2+ and Citric Acid as Crosslinking Agents for Pharmaceutical Applications. Polymers 2021, 13, 4423. https://doi.org/10.3390/polym13244423
O-chongpian P, Na Takuathung M, Chittasupho C, Ruksiriwanich W, Chaiwarit T, Baipaywad P, Jantrawut P. Composite Nanocellulose Fibers-Based Hydrogels Loading Clindamycin HCl with Ca2+ and Citric Acid as Crosslinking Agents for Pharmaceutical Applications. Polymers. 2021; 13(24):4423. https://doi.org/10.3390/polym13244423
Chicago/Turabian StyleO-chongpian, Pichapar, Mingkwan Na Takuathung, Chuda Chittasupho, Warintorn Ruksiriwanich, Tanpong Chaiwarit, Phornsawat Baipaywad, and Pensak Jantrawut. 2021. "Composite Nanocellulose Fibers-Based Hydrogels Loading Clindamycin HCl with Ca2+ and Citric Acid as Crosslinking Agents for Pharmaceutical Applications" Polymers 13, no. 24: 4423. https://doi.org/10.3390/polym13244423
APA StyleO-chongpian, P., Na Takuathung, M., Chittasupho, C., Ruksiriwanich, W., Chaiwarit, T., Baipaywad, P., & Jantrawut, P. (2021). Composite Nanocellulose Fibers-Based Hydrogels Loading Clindamycin HCl with Ca2+ and Citric Acid as Crosslinking Agents for Pharmaceutical Applications. Polymers, 13(24), 4423. https://doi.org/10.3390/polym13244423