Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Hollow PPy Nanocone Membrane
2.3. Electrochemical Polymerization
2.4. CO2 Capture Performance
3. Results and Discussion
3.1. Subsection
3.2. CO2 Capturing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacDowell, N.; Florin, N.; Buchard, A.; Hallett, J.; Galindo, A.; Jackson, G.; Adjiman, C.S.; Williams, C.K.; Shah, N.; Fennell, P. An overview of CO2 capture technologies. Energy Environ. Sci. 2010, 3, 1645–1669. [Google Scholar] [CrossRef] [Green Version]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Mitigation of Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2015. [Google Scholar]
- Figueroa, J.D.; Fout, T.; Plasynski, S.; McLlvried, H.; Srivastava, R.D. Advance in CO2 capture technology—The U.S. Department of Energy’s Carbon Sequestration Program. Int. J. Greenh. Gas Control 2008, 2, 9–20. [Google Scholar] [CrossRef]
- Belmabkhout, Y.; Sayari, A. Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions. Adsorption 2009, 15, 318–328. [Google Scholar] [CrossRef]
- Mofijur, M.; Masjuki, H.H.; Kalam, M.A.; Hazrat, M.A.; Liaquat, A.M.; Shahabuddin, M.; Varman, M. Prospects of biodiesel from Jatropha in Malaysia. Renew. Sustain. Energ. Rev. 2012, 16, 5007–5020. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef]
- Chen, C.; Yang, S.-T.; Ahn, W.-S.; Ryoo, R. Amine-impregnated silica monolith with a hierarchical pore structure: Enhancement of CO2 capture capacity. Chem. Commun. 2009, 24, 3627–3629. [Google Scholar] [CrossRef]
- Choi, S.; Drese, J.H.; Jones, C.W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. ChemSusChem 2009, 2, 796–854. [Google Scholar] [CrossRef]
- Moura, P.A.S.; Bezerra, D.P.; Vilarrasa-Garcia, E.; Bastos-Neto, M.; Azevedo, D.C.S. Adsorption equilibria of CO2 and CH4 in cation-exchanged zeolites 13X. Adsorption 2016, 22, 71–80. [Google Scholar] [CrossRef]
- Ogawa, T.; Iyoki, K.; Fukushima, T.; Kajikawa, Y. Landscape of Research Areas for Zeolites and Metal-Organic Frameworks Using Computational Classification Based on Citation Networks. Materials 2017, 10, 1428. [Google Scholar] [CrossRef] [Green Version]
- Castrillon, M.; Moura, K.O.; Alvez, C.; Bastos-Neto, M.; Azevedo, D.C.S.; Jofnann, J.; Möller, J.; Einicke, W.-D.; Gläser, R. CO2 and H2S Removal from CH4-Rich Streams by Adsorption on Activated Carbons Modified with K2CO3, NaOH, or Fe2O3. Energy Fuels 2016, 30, 9596–9604. [Google Scholar] [CrossRef]
- Arulkumar, M.; Thirumalai, K.; Sathishkumar, P.; Palvannan, T. Rapid removal of chromium from aqueous solution using novel prawn shell activated carbon. Chem. Eng. J. 2012, 185–186, 178–186. [Google Scholar] [CrossRef]
- Pinto, M.L.; Pires, J. Porous and hybrid clay based materials for separation of hydrocarbons. Microporous Mesoporous Mater. 2012, 151, 403–410. [Google Scholar] [CrossRef]
- Sumida, K.; Rogow, D.L.; Mason, J.A.; McDonald, T.M.; Bloch, E.D.; Herm, Z.R.; Bae, T.-H.; Long, J.R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2012, 112, 724–781. [Google Scholar] [CrossRef] [PubMed]
- Donia, M.; Atia, A.A.; Daher, A.M.; Desouky, O.A.; Elshehy, E.A. Synthesis of Amine/Thiol Magnetic Resin and Study of Its Interaction with Zr(IV) and Hf(IV) Ions in Their Aqueous Solutions. J. Dispers. Sci. Technol. 2011, 32, 634–641. [Google Scholar] [CrossRef]
- Bloch, W.M.; Babarao, R.; Hill, M.R.; Doonan, C.J.; Sumby, C.J. Post-synthetic Structural Processing in a Metal-Organic Framework Material as a Mechanism for Exceptional CO2/N2 Selectivity. J. Am. Chem. Soc. 2013, 135, 10441–10448. [Google Scholar] [CrossRef] [PubMed]
- Donia, A.M.; Atia, A.A.; Daher, A.M.; Elshehy, E.A. Extraction and Separation of Zirconium(IV) and Hafnium(IV) from Chloride Media Using Magnetic Resin with Phosphoric Acid Functionality. J. Dispers. Sci. Technol. 2011, 32, 193–202. [Google Scholar] [CrossRef]
- Fusco, C.; Casiello, M.; Catucci, L.; Comparelli, R.; Cotugno, P.; Falcicchio, A.; Fracassi, F.; Margiotta, V.; Moliterni, A.; Petronella, F.; et al. TiO2@PEI-Grafted-MWCNTs Hybrids Nanocomposites Catalysts for CO2 Photoreduction. Materials 2018, 11, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieria, R.B.; Moura, P.A.S.; Vilarrasa-Garcia, E.; Azevedo, D.C.S.; Pastore, H.O. Polyamine-Grafted Magadiite: High CO2 Selectivity at Capture from CO2/N2 and CO2/CH4 Mixtures. J. CO2 Util. 2018, 23, 29–41. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Carbon Dioxide Capture and Storage; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2006; ISBN 92-9169-119-4. [Google Scholar]
- Hiyoshi, N.; Yogo, K.; Yashima, T. Adsorption Characteristics of Carbon Dioxide on Organically Functionalized SBA-15. Microporous Mesoporous Mater. 2005, 84, 357–365. [Google Scholar] [CrossRef]
- Mali, S.P.; Gosavi, S.A.; Inamdar, A.S.; Chougale, U.M.; Fulari, V.J. Synthesis and Characterizations of Chemically and Electrochemically Polymerized Polyaniline Thin Films for Energy Storage. Adv. Sci. Lett. 2015, 21, 2534–2538. [Google Scholar] [CrossRef]
- Zoromba, M.S.; Al-Hossainy, A.F.; Abdel-Aziz, M.H. Conductive thin films based on poly (aniline-co-o-anthranilic acid)/magnetite nanocomposite for photovoltaic applications. Synth. Met. 2017, 231 (Suppl. C), 34–43. [Google Scholar] [CrossRef]
- El-Said, W.A.; Abdelshakour, M.; Choi, J.-H.; Choi, J.-W. Application of conducting polymer nanostructures to electrochemical biosensors. Molecules 2020, 25, 307. [Google Scholar] [CrossRef] [Green Version]
- El-Said, W.A.; Yea, C.-H.; Choi, J.-W.; Kwon, I.-K. Ultrathin polyaniline film coated on an indium-tin oxide cell-based chip for study of anticancer effect. Thin Solid Films 2009, 518, 661–667. [Google Scholar] [CrossRef]
- Guimard, N.K.; Gomez, N.; Schmidt, C.E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007, 32, 876. [Google Scholar] [CrossRef]
- El-Said, W.A.; Nasr, O.; Soliman, A.I.A.; Elshehy, E.A.; Khan, Z.A.; Abdel-Wadood, F.K. Fabrication of polypyrrole/Au nanoflowers modified gold electrode for highly sensitive sensing of paracetamol in pharmaceutical formulation. Appl. Surf. Sci. Adv. 2021, 4, 100065. [Google Scholar] [CrossRef]
- El-Said, W.A.; Alshitari, W.; Choi, J.-W. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2020, 229, 117890. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, S. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem. Soc. Rev. 2014, 43, 2385–2401. [Google Scholar] [CrossRef]
- Zhang, F.; Jiang, Y.; Liu, X.; Meng, J.; Zhang, P.; Liu, H.; Yang, G.; Li, G.; Jiang, L.; Wan, L.-J.; et al. Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. Nano Lett. 2016, 16, 766–772. [Google Scholar] [CrossRef]
- Si, P.; Ding, S.; Lou, X.-W.; Kim, D.-H. An electrochemically formed three-dimensional structure of polypyrrole/graphene nanoplatelets for high-performance supercapacitors. RSC Adv. 2011, 1, 1271–1278. [Google Scholar] [CrossRef]
- Chang, H.H.; Chang, C.K.; Tsai, Y.C.; Liao, C.S. Electrochemically synthesized graphene/polypyrrole composites and their use in supercapacitor. Carbon 2012, 50, 2331–2336. [Google Scholar] [CrossRef]
- Cui, Y.M.; Wen, Z.Y.; Liang, X.; Lu, Y.; Jin, J.; Wu, M.F.; Wu, X.W. A tubular polypyrrole based air electrode with improved O2 diffusivity for Li–O2 batteries. Energy Environ. Sci. 2012, 5, 7893–7897. [Google Scholar] [CrossRef]
- Ravichandran, S.; Nagarajan, S.; Kokil, A.; Ponrathnam, T.; Bouldin, R.M.; Bruno, F.F.; Samuelson, L.; Kumar, J.; Nagarajan, R. Micellar Nanoreactors for Hematin Catalyzed Synthesis of Electrically Conducting Polypyrrole. Langmuir 2012, 28, 13380–13386. [Google Scholar] [CrossRef] [PubMed]
- Gelmi, A.; Higgins, M.J.; Wallace, G.G. Resolving sub-molecular binding and electrical switching mechanisms of single proteins at electroactive conducting polymers. Small 2013, 9, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.S.; Kwon, O.S.; Lee, S.H.; Park, S.J.; Kim, U.K.; Jang, J.; Park, T.H. Human Taste Receptor-Functionalized Field Effect Transistor as a Human-Like Nanobioelectronic Tongue. Nano Lett. 2013, 13, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.Q.; Li, F.W.; Wang, Y.; Cai, X.J.; Pan, F.; Chen, J.T. Ultralow-limit gas detection in nano-dumbbell polymer sensor viaelectrospinning. Nanoscale 2013, 5, 1803–1805. [Google Scholar] [CrossRef]
- Ma, M.M.; Guo, L.; Anderson, D.G.; Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Zheng, W.; Razal, J.M.; Spinks, G.M.; Truong, V.T.; Whitten, P.G.; Wallace, G.G. The Role of Unbound Oligomers in the Nucleation and Growth of Electrodeposited Polypyrrole and Method for Preparing High Strength, High Conductivity Films. Langmuir 2012, 28, 10891–10897. [Google Scholar] [CrossRef] [Green Version]
- Richard Prabakar, S.J.; Pyo, M. Corrosion protection of aluminum in LiPF6 by poly(3,4-ethylenedioxythiophene) nanosphere-coated multiwalled carbon nanotube. Corros. Sci. 2012, 57, 42–48. [Google Scholar] [CrossRef]
- Makris, T.; Dracopoulos, V.; Stergiopoulos, T.; Lianos, P. A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim. Acta 2011, 56, 2004–2008. [Google Scholar] [CrossRef]
- Bu, C.; Tai, Q.; Liu, Y.; Guo, S.; Zhao, X.J. A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. Power Sources 2013, 221, 78–83. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.H.; Zhang, L.X.; Cao, B.Q.; Wu, S.H. Reactive template synthesis of polypyrrole nanotubes for fabricating metal/conducting polymer nanocomposites. Macromol. Rapid Commun. 2013, 34, 528–532. [Google Scholar] [CrossRef]
- Lee, J.I.; Cho, S.H.; Park, S.-M.; Kim, J.K.; Kim, J.K.; Yu, J.-W.; Kim, Y.C.; Russell, T.P. Highly Aligned Ultrahigh Density Arrays of Conducting Polymer Nanorods using Block Copolymer Templates. Nano Lett. 2008, 8, 2315–2320. [Google Scholar] [CrossRef]
- Nam, D.-H.; Kim, M.-J.; Lim, S.-J.; Song, I.-S.; Kwon, H.-S.J. Single-step synthesis of polypyrrole nanowires by cathodic electropolymerization. Mater. Chem. A 2013, 1, 8061–8068. [Google Scholar] [CrossRef]
- Massafera, M.P.; Córdoba de Torresi, S.I.J. Evaluating the performance of polypyrrole nanowires on the electrochemical sensing of ammonia in solution. Electroanal. Chem. 2012, 669, 90–94. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, Y.; Wang, J.; Gao, M.; Wang, J. Interface Effect on the Electropolymerized Polypyrrole Films with Hollow Micro/Nanohorn Arrays. ACS Appl. Mater. Interfaces 2014, 6, 4693–4704. [Google Scholar] [CrossRef]
- Wang, J.; Wen, Z.; Zi, Y.; Zhou, P.; Lin, J.; Guo, H.; Xu, Y.; Wang, Z.L. All-Plastic-Materials Based Self-Charging Power System Composed of Triboelectric Nanogenerators and Supercapacitors. Adv. Funct. Mater. 2016, 26, 1070–1076. [Google Scholar] [CrossRef]
- Ma, S.; Hu, S.; Wang, Q.; Liu, Y.; Zhao, G.; Zhang, Q.; Mao, C.; Zhao, B. Evaluation of sialic acid based on electrochemical cytosensor with 3D micro/nanostructured sensing interface. Anal. Methods 2017, 9, 6171–6176. [Google Scholar] [CrossRef]
- Song, J.; Liu, H.; Wan, M.; Zhu, Y.; Jiang, L.J. Bio-inspired isotropic and anisotropic wettability on a Janus free-standing polypyrrole film fabricated by interfacial electro-polymerization. Mater. Chem. A 2013, 1, 1740–1744. [Google Scholar] [CrossRef]
- Santos, L.; Martin, P.; Ghilane, J.; Lacaze, P.C.; Lacroix, J.-C. Micro/Nano-Structured Polypyrrole Surfaces on Oxidizable Metals as Smart Electroswitchable Coatings. ACS Appl. Mater. Interfaces 2013, 5, 10159–10164. [Google Scholar] [CrossRef]
- Tang, Y.H.; Wu, N.; Luo, S.L.; Liu, C.B.; Wang, K.; Chen, L.Y. One-Step Electrodeposition to Layer-by-Layer Graphene–Conducting-Polymer Hybrid Films. Macromol. Rapid Commun. 2012, 33, 1780–1786. [Google Scholar] [CrossRef]
- Wang, J.P.; Xu, Y.L.; Wang, J.; Du, X.F.; Xiao, F.; Li, J.B. High charge/discharge rate polypyrrole films prepared by pulse current polymerization. Synth. Met. 2010, 160, 1826–1831. [Google Scholar] [CrossRef]
- Choi, J.H.; El-Said, W.A.; Choi, J.W. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor. Appl. Surf. Sci. 2020, 506, 144669. [Google Scholar] [CrossRef]
- Sharma, M.; Waterhouse, G.I.N.; Loader, S.W.C.; Garg, S.; Svirskis, D. High surface area polypyrrole scaffolds for tunable drug delivery. Int. J. Pharm. 2013, 443, 163–168. [Google Scholar] [CrossRef]
- Olatunji, M.A.; Khandaker, M.U.; Amin, Y.M.; Ekramul Mahmud, H.N.M. Development and Characterization of Polypyrrole-Based Nanocomposite Adsorbent and Its Applications in Removal of Radioactive Materials. In Proceedings of the International Conference for Innovation in Biomedical Engineering and Life Sciences (ICIBEL 2015), Putrajaya, Malaysia, 6–8 December 2015; Volume 56. [Google Scholar]
- Mihranyan, A.; Nyholm, L.; Bennett, A.E.G.; Strømme, M.J. A Novel High Specific Surface Area Conducting Paper Material Composed of Polypyrrole and Cladophora Cellulose. Phys. Chem. B 2008, 112, 12249–12255. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, N.; Carlsson, D.O.; Hong, J.; Larsson, R.; Fellström, B.; Nyholm, L.; Strømme, M.; Mihranyan, A.J.R. Haemocompatibility and ion exchange capability of nanocellulose polypyrrole membranes intended for blood purification. J. R. Soc. Interface 2012, 9, 1943–1955. [Google Scholar] [CrossRef] [Green Version]
- Rong, Q.; Han, H.; Feng, F.; Ma, Z. Network nanostructured polypyrrole hydrogel/Au composites as enhanced electrochemical biosensing platform. Sci. Rep. 2015, 5, 11440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sing, K.S.W.; Everett, D.H.; Haul, R.A.W.; Moscou, L.; Pierotti, R.A.; Rouquerol, J.; Siemieniewska, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Broekhoff, J.C.P. Mesopore determination from nitrogen sorption isotherms: Fundamentals, scope, limitations. Stud. Surf. Sci. Catal. 1979, 3, 663–684. [Google Scholar]
- Shields, J.E.; Lowell, S.; Thomas, M.A.; Thommes, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density; Kluwer Academic Publisher: Boston, MA, USA, 2004; pp. 43–45. [Google Scholar]
- Adhikari, S.; Sarkar, D.; Madras, G. Hierarchical Design of CuS Architectures for Visible Light Photocatalysis of 4-Chlorophenol. ACS Omega 2017, 2, 4009–4021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Partch, R.; Gangolli, S.G.; Matijević, E.; Cal, W.; Arajs, S. Conducting polymer composites: I. Surface-induced polymerization of pyrrole on iron(III) and cerium(IV) oxide particles. J. Colloid Interface Sci. 1991, 144, 27–35. [Google Scholar] [CrossRef]
- Emran, K.M.; Ali, S.M.; Al-Oufi, A.L.L. Synthesis and Characterization of Nano-Conducting Copolymer Composites: Efficient Sorbents for Organic Pollutants. Molecules 2017, 22, 772. [Google Scholar] [CrossRef] [Green Version]
- Sampathkumar, L.; Selvin, P.C.; Selvasekarapandian, S.; Perumal, P.; Chitra, R.; Muthukrishnan, M. Synthesis and characterization of biopolymer electrolyte based on tamarind seed polysaccharide, lithium perchlorate and ethylene carbonate for electrochemical applications. Ionics 2019, 25, 1067–1082. [Google Scholar] [CrossRef]
- McCann, N.; Phan, D.; Fernandes, D.; Maeder, M. A Systematic Investigation of Carbamate Stability Constants by 1H NMR. Int. J. Greenh. Gas Control. 2011, 5, 396–400. [Google Scholar] [CrossRef]
- Sanz, R.; Calleja, G.; Arencibia, A.; Sanz-Pèrez, E.S. CO2 Adsorption on Branched Polyethyleneimine-Impregnated Mesoporous silica SBA-15. Appl. Surf. Sci. 2010, 256, 5323–5328. [Google Scholar] [CrossRef]
- Aresta, M.; Quaranta, E. Role of the Macrocyclic Polyether in the Synthesis of N-Alkylcarbamate Esters from Primary Amines, CO2 and Alkyl Halides in the Presence of Crown-Ethers. Tetrahedron 1992, 48, 1515–1530. [Google Scholar] [CrossRef]
- Wang, X.X.; Schwartz, V.; Clark, J.C.; Ma, M.L.; Overbury, S.H.; Xu, X.C.; Song, C.S. Infrared Study of CO2 Sorption over “Molecular Basket” Sorbent Consisting of Polyethylenimine-Modified Mesoporous Molecular Sieve. J. Phys. Chem. 2009, 113, 7260–7268. [Google Scholar] [CrossRef]
- White, C.M.; Strazisar, B.R.; Granite, E.J.; Hoffman, J.S. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers. J. Air Waste Manag. Assoc. 2003, 53, 645–715. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.C.C.; Chuang, S.S.C.; Gray, M.; Soong, Y. In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with y-(Aminopropyl)triethoxysilane. Energy Fuels 2003, 17, 468–473. [Google Scholar] [CrossRef]
- Vogiatzis, K.; Mavrandonakis, A.; Klopper, W.; Froudakis, G.E. Ab initio study of the interactions between CO2 and N-containing organic heterocycles. ChemPhysChem 2009, 10, 374–383. [Google Scholar] [CrossRef]
- Du, N.; Park, H.B.; Robertson, G.P.; Dal-Cin, M.M.; Visser, T.; Scoles, L.; Guiver, M.D. Polymer nanosieve membranes for CO2-capture applications. Nat. Mater. 2011, 10, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.A.; Vladisavljević, G.T.; Zhu, Y.; Manović, V. Synthesis of size-tunable CO2-philic imprinted polymeric particles (MIPs) for low-pressure CO2 capture using oilin-oil suspension polymerization. Environ. Sci. Technol. 2017, 51, 11476–11483. [Google Scholar] [CrossRef]
- Azofra, L.M.; Altarsha, M.; Ruiz-López, M.F.; Ingrosso, F. A theoretical investigation of the CO2-philicity of amides and carbamides. Theor. Chem. Acc. 2013, 132, 1326–1334. [Google Scholar] [CrossRef]
- Fayemiwo, K.A.; Vladisavljević, G.T.; Nabavi, S.A.; Benyahia, B.; Hanak, D.P.; Loponov, K.N.; Manović, V. Nitrogen-rich hyper-crosslinked polymers for low-pressure CO2 capture. Chem. Eng. J. 2018, 334, 2004–2013. [Google Scholar] [CrossRef] [Green Version]
- Lackner, K.S. Capture of carbon dioxide from ambient air. Eur. Phys. J.—Spec. Top. 2009, 176, 93–106. [Google Scholar] [CrossRef]
- Goyal, N.; Suman, S.; Gupta, S.K. Mathematical modeling of CO2 separation from gaseous-mixture using a Hollow-Fiber Membrane Module: Physical mechanism and influence of partial-wetting. J. Membr. Sci. 2015, 474, 64–82. [Google Scholar] [CrossRef]
- Mane, S.; Gao, Z.-Y.; Li, Y.-X.; Xue, D.-M.; Liu, X.-Q.; Sun, L.-B. Fabrication of microporous polymers for selective CO2 capture: The significant role of crosslinking and crosslinker length. J. Mater. Chem. A 2017, 5, 23310–23318. [Google Scholar] [CrossRef]
Material | Surface Area (m2/g) | References |
---|---|---|
PPy | 19.2 | 55 |
PPy | 10.57 | 56 |
PPy/cellulose composite | 57 | 57 |
Nanocellulose PPy membrane | 80 | 58 |
PPy hydrogel/Au composites | 26.2 | 59 |
hPPy | 949.5 | The present work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Said, W.A.; Choi, J.-H.; Hajjar, D.; Makki, A.A.; Choi, J.-W. Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker. Polymers 2022, 14, 183. https://doi.org/10.3390/polym14010183
El-Said WA, Choi J-H, Hajjar D, Makki AA, Choi J-W. Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker. Polymers. 2022; 14(1):183. https://doi.org/10.3390/polym14010183
Chicago/Turabian StyleEl-Said, Waleed A., Jin-Ha Choi, Dina Hajjar, Arwa A. Makki, and Jeong-Woo Choi. 2022. "Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker" Polymers 14, no. 1: 183. https://doi.org/10.3390/polym14010183
APA StyleEl-Said, W. A., Choi, J. -H., Hajjar, D., Makki, A. A., & Choi, J. -W. (2022). Fabrication of Hollow Nanocones Membrane with an Extraordinary Surface Area as CO2 Sucker. Polymers, 14(1), 183. https://doi.org/10.3390/polym14010183