Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Synthesis of Fe3O4 Coated with CNFs
2.3. Synthesis of Fe3O4@CNFs@SiO2 and Sb(III)-IIP-Fe3O4@SiO2@CNFs Nanocomposites
2.4. Ultrasonic-Assisted Magnetic Solid Phase Extraction (UA-MSPE) Procedure
2.5. Optimisation Strategy
2.6. Adsorption Experiments
2.7. Selectivity Experiments
3. Results and Discussion
3.1. Characterisation
3.1.1. X-ray Powder Diffraction (XRD)
3.1.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3.1.3. Scanning Electron Microscope/Energy Dispersive X-ray Spectroscopy (SEM/EDS)
3.1.4. Transmission Electron Microscopy (TEM)
3.2. Optimisation Strategy
3.2.1. Response Surface Methodology
3.2.2. Estimation of Optimum Conditions Using Desirability Functions
3.3. Scatchard Analysis, Adsorption Isotherms and Selectivity Studies
3.3.1. Scatchard Analysis
3.3.2. Adsorption Isotherms
3.3.3. Selectivity
3.4. Analytical Performances
3.5. Application to Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, M.; Wang, N.; Long, X.; Zhang, C.; Ma, C.; Zhong, Q.; Wang, A.; Wang, Y.; Pervaiz, A.; Shan, J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci. 2018, 75, 14–39. [Google Scholar] [CrossRef] [PubMed]
- Panhwar, A.H.; Tuzen, M.; Hazer, B.; Kazi, T.G. Solid phase microextraction method using a novel polystyrene oleic acid imidazole polymer in micropipette tip of syringe system for speciation and determination of antimony in environmental and food samples. Talanta 2018, 184, 115–121. [Google Scholar] [CrossRef]
- Frizzarin, R.M.; Portugal, L.A.; Estela, J.M.; Rocha, F.R.P.; Cerdà, V. On-line lab-in-syringe cloud point extraction for the spectrophotometric determination of antimony. Talanta 2016, 148, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Govind, P.; Madhuri, S. Heavy metals causing toxicity in animals and fishes. Res. J. Anim. Vet. Fish. Sci. 2014, 2, 17–23. [Google Scholar]
- Dobrowolski, R.; Adamczyk, A.; Otto, M.; Dobrzyńska, J. Determination of antimony in sediments and soils by slurry sampling graphite furnace atomic absorption spectrometry using a permanent chemical modifier. Spectrochim. Acta Part B At. Spectrosc. 2011, 66, 493–499. [Google Scholar] [CrossRef]
- Fan, H.-T.; Sun, Y.; Tang, Q.; Li, W.-L.; Sun, T. Selective adsorption of antimony (III) from aqueous solution by ion-imprinted organic—inorganic hybrid sorbent: Kinetics, isotherms and thermodynamics. J. Taiwan Inst. Chem. Eng. 2014, 45, 2640–2648. [Google Scholar] [CrossRef]
- Fang, L.; Zhang, Y.; Lu, B.; Wang, L.; Yao, X.; Ge, T. New two-step extraction method in antimony speciation using HPLC-ICP-MS technique in inhalable particulate matter (PM2. 5). Microchem. J. 2019, 146, 1269–1275. [Google Scholar] [CrossRef]
- Mihucz, V.G.; Záray, G. Occurrence of antimony and phthalate esters in polyethylene terephthalate bottled drinking water. Appl. Spectrosc. Rev. 2016, 51, 183–209. [Google Scholar] [CrossRef]
- Biata, N.R.; Nyaba, L.; Ramontja, J.; Mketo, N.; Nomngongo, P.N. Determination of antimony and tin in beverages using inductively coupled plasma-optical emission spectrometry after ultrasound-assisted ionic liquid dispersive liquid-liquid phase microextraction. Food Chem. 2017, 237, 904–911. [Google Scholar] [CrossRef]
- López-García, I.; Rengevicova, S.; Muñoz-Sandoval, M.J.; Hernández-Córdoba, M. Speciation of very low amounts of antimony in waters using magnetic core-modified silver nanoparticles and electrothermal atomic absorption spectrometry. Talanta 2017, 162, 309–315. [Google Scholar] [CrossRef]
- Atakan, D.; Durukan, İ.; Bektas, S. Determination of antimony from polyethylene terephthalate in drinking water by solid floating organic drop microextraction and electrothermal atomization atomic absorption spectrometry. Anal. Lett. 2016, 49, 1066–1078. [Google Scholar] [CrossRef]
- Chapa-Martínez, C.A.; Hinojosa-Reyes, L.; Hernández-Ramírez, A.; Ruiz-Ruiz, E.; Maya-Treviño, L.; Guzmán-Mar, J.L. An evaluation of the migration of antimony from polyethylene terephthalate (PET) plastic used for bottled drinking water. Sci. Total Environ. 2016, 565, 511–518. [Google Scholar] [CrossRef]
- Amereih, S.; Meisel, T.; Wegsheider, W. Accurate Determination of Total Antimony Using ICP-MS and Optimization Its Extraction Efficiency From Reference and Soil Samples. Palest. Tech. Univ. Res. J. 2018, 6, 48–58. [Google Scholar] [CrossRef]
- De Jesus, A.; Dessuy, M.B.; Huber, C.S.; Zmozinski, A.V.; Duarte, Á.T.; Vale, M.G.R.; Andrade, J.B. Determination of antimony in pet containers by direct analysis of solid samples using graphite furnace atomic absorption spectrometry and leaching studies. Microchem. J. 2016, 124, 222–227. [Google Scholar] [CrossRef]
- Nyaba, L.; Matong, J.M.; Nomngongo, P.N. Nanoparticles consisting of magnetite and Al2O3 for ligandless ultrasound-assisted dispersive solid phase microextraction of Sb, Mo and V prior to their determination by ICP-OES. Microchim. Acta 2016, 183, 1289–1297. [Google Scholar] [CrossRef]
- Ondrasek, G.; Rengel, Z.; Romic, D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol. Environ. Saf. 2018, 151, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Biata, N.R.; Mashile, G.P.; Ramontja, J.; Mketo, N.; Nomngongo, P.N. Application of ultrasound-assisted cloud point extraction for preconcentration of antimony, tin and thallium in food and water samples prior to ICP-OES determination. J. Food Compos. Anal. 2019, 76, 14–21. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, S.; Lu, D. Dispersive micro-solid phase extraction combined with dispersive liquid-liquid microextraction for speciation analysis of antimony by electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2018, 139, 70–74. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Y.; Xu, H.-B. Sb (III)-imprinted organic-inorganic hybrid sorbent prepared by hydrothermal-assisted surface imprinting technique for selective adsorption of Sb (III). Russ. J. Phys. Chem. A 2018, 92, 575–581. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Wei, S.; Xiao, C.; Cao, J.; Wang, Z. Novel dual-template magnetic ion imprinted polymer for separation and analysis of Cd2+ and Pb2+ in soil and food. J. Clean. Prod. 2020, 262, 121387. [Google Scholar] [CrossRef]
- Luo, J.; Luo, X.; Crittenden, J.; Qu, J.; Bai, Y.; Peng, Y.; Li, J. Removal of antimonite (Sb (III)) and antimonate (Sb (V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environ. Sci. Technol. 2015, 49, 11115–11124. [Google Scholar] [CrossRef]
- Zou, J.-P.; Liu, H.-L.; Luo, J.; Xing, Q.-J.; Du, H.-M.; Jiang, X.-H.; Luo, X.-B.; Luo, S.-L.; Suib, S.L. Three-dimensional reduced graphene oxide coupled with Mn3O4 for highly efficient removal of Sb (III) and Sb (V) from water. ACS Appl. Mater. Interfaces 2016, 8, 18140–18149. [Google Scholar] [CrossRef] [PubMed]
- Karcioğlu Karakaş, Z.; Boncukcuoğlu, R.; Hakkı Karakaş, İ. Antimony removal from aqueous solutions using magnetic nickel ferrite (NiFe2O4) nanoparticles. Sep. Sci. Technol. 2019, 54, 1141–1158. [Google Scholar] [CrossRef]
- Batlokwa, B.S.; Chimuka, L.; Tshentu, Z.; Cukrowska, E.; Torto, N. An ion-imprinted polymer for the selective extraction of mercury (II) ions in aqueous media. Water SA 2012, 38, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Dai, X.; Cheng, T.; Li, S. Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr (VI). Carbohydr. Polym. 2018, 195, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, S.C.L.; Descalzo, A.B.; Raimundo, I.M.; Orellana, G.; Moreno-Bondi, M.C. Fluorescent ion-imprinted polymers for selective Cu (II) optosensing. Anal. Bioanal. Chem. 2012, 402, 3253–3260. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.-T.; Tang, Q.; Sun, Y.; Zhang, Z.-G.; Li, W.-X. Selective removal of antimony (III) from aqueous solution using antimony (III)-imprinted organic—inorganic hybrid sorbents by combination of surface imprinting technique with sol—Gel process. Chem. Eng. J. 2014, 258, 146–156. [Google Scholar] [CrossRef]
- Yordanova, T.; Dakova, I.; Balashev, K.; Karadjova, I. Polymeric ion-imprinted nanoparticles for mercury speciation in surface waters. Microchem. J. 2014, 113, 42–47. [Google Scholar] [CrossRef]
- Kakavandi, M.G.; Behbahani, M.; Omidi, F.; Hesam, G. Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for preconcentration and trace determination of lead ions in food and water samples. Food Anal. Methods 2017, 10, 2454–2466. [Google Scholar] [CrossRef]
- Yuan, G.; Tu, H.; Liu, J.; Zhao, C.; Liao, J.; Yang, Y.; Yang, J.; Liu, N. A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co (II) from aqueous solutions. Chem. Eng. J. 2018, 333, 280–288. [Google Scholar] [CrossRef]
- Abdullah; Balouch, A.; Talpur, F.N.; Kumar, A.; Shah, M.T.; Mahar, A.M.; Amina. Synthesis of ultrasonic-assisted lead ion imprinted polymer as a selective sorbent for the removal of Pb2+ in a real water sample. Microchem. J. 2019, 146, 1160–1168. [Google Scholar]
- Sadani, M.; Rasolevandi, T.; Azarpira, H.; Mahvi, A.H.; Ghaderpoori, M.; Mohseni, S.M.; Atamaleki, A. Arsenic selective adsorption using a nanomagnetic ion imprinted polymer: Optimization, equilibrium, and regeneration studies. J. Mol. Liq. 2020, 317, 114246. [Google Scholar] [CrossRef]
- Samandari, L.; Bahrami, A.; Shamsipur, M.; Farzin, L.; Hashemi, B. Electrochemical preconcentration of ultra-trace Cd2+ from environmental and biological samples prior to its determination using carbon paste electrode impregnated with ion imprinted polymer nanoparticles. Int. J. Environ. Anal. Chem. 2019, 1–15. [Google Scholar] [CrossRef]
- Ma, J.; Yan, M.; Feng, G.; Ying, Y.; Chen, G.; Shao, Y.; She, Y.; Wang, M.; Sun, J.; Zheng, L.; et al. An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications. Talanta 2021, 225, 122031. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Qiu, L.; Zheng, W.; Meng, Z.; Xue, M.; Qiao, Y. Rapid self-assembly preparation of p-nitrophenol-molecular imprinted photonic crystal sensors. Microchem. J. 2021, 164, 105950. [Google Scholar] [CrossRef]
- Özcan, N.; Medetalibeyoglu, H.; Akyıldırım, O.; Atar, N.; Yola, M.L. Electrochemical detection of amyloid-β protein by delaminated titanium carbide MXene/multi-walled carbon nanotubes composite with molecularly imprinted polymer. Mater. Today Commun. 2020, 23, 101097. [Google Scholar] [CrossRef]
- Chen, B.; Xie, Q.; Zhang, S.; Lin, L.; Zhang, Y.; Zhang, L.; Jiang, Y.; Zhao, M. A novel electrochemical molecularly imprinted senor based on CuCo2O4@ biomass derived carbon for sensitive detection of tryptophan. J. Electroanal. Chem. 2021, 901, 115680. [Google Scholar] [CrossRef]
- Kaya, H.K.; Cinar, S.; Altundal, G.; Bayramlı, Y.; Unaleroglu, C.; Kuralay, F. A novel design thia-bilane structure-based molecular imprinted electrochemical sensor for sensitive and selective dopamine determination. Sens. Actuators B Chem. 2021, 346, 130425. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Li, H.; Yu, D.; Wang, Y.; Wang, W.; Wu, M. Preparation and selective adsorption of surface-imprinted microspheres based on hyperbranched polyamide—functionalized sodium alginate for the removal of Sb (III). Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124106. [Google Scholar] [CrossRef]
- Fang, L.; Xiao, X.; Kang, R.; Ren, Z.; Yu, H.; Pavlostathis, S.G.; Luo, J.; Luo, X. Highly selective adsorption of antimonite by novel imprinted polymer with microdomain confinement effect. J. Chem. Eng. Data 2018, 63, 1513–1523. [Google Scholar] [CrossRef]
- Shakerian, F.; Dadfarnia, S.; Shabani, A.M.H. Synthesis of nano-pore size Al (III)-imprinted polymer for the extraction and preconcentration of aluminum ions. J. Iran. Chem. Soc. 2013, 10, 669–676. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, Y.; Xu, H.-B. Hydrothermal-assisted derived ion-imprinted sorbent for preconcentration of antimony (III) in water samples. Sep. Sci. Technol. 2017, 52, 1938–1945. [Google Scholar] [CrossRef]
- Safa, F.; Alinezhad, Y. Ternary nanocomposite of SiO2/Fe3O4/Multi-Walled Carbon Nanotubes for Efficient Adsorption of Malachite Green: Response Surface Modeling, Equilibrium Isotherms and Kinetics. Silicon 2019, 12, 1619–1637. [Google Scholar] [CrossRef]
- Shakerian, F.; Dadfarnia, S.; Shabani, A.M.H.; MaryamNili, A. Synthesis and characterisation of nano-pore antimony imprinted polymer and its use in the extraction and determination of antimony in water and fruit juice samples. Food Chem. 2014, 145, 571–577. [Google Scholar] [CrossRef]
- Muckoya, V.A.; Njobeh, P.B.; Nomngongo, P.N.; Ngila, J.C. Ultrasonic-Assisted Magnetic Solid-Phase Dispersive Extraction for Determination of Chlorpyrifos and Triclosan in Wastewater Samples prior to Liquid Chromatography Tandem Mass Spectrometry Detection. Chromatographia 2020, 83, 373–383. [Google Scholar] [CrossRef]
- Ahmad, M.; Wang, J.; Xu, J.; Zhang, Q.; Zhang, B. Magnetic tubular carbon nanofibers as efficient Cu (II) ion adsorbent from wastewater. J. Clean. Prod. 2020, 252, 119825. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Y.; Li, Y.; Dolgormaa, A.; Fang, H.; Guo, L.; Huang, J.; Yang, J. A novel magnetic Cd (II) ion-imprinted polymer as a selective sorbent for the removal of cadmium ions from aqueous solution. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1874–1885. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, X.; Zhang, M.; Jiao, J.; Zhang, H.; Du, J.; Zhang, B.; Ren, Z. Preparation of highly efficient ion-imprinted polymers with Fe3O4 nanoparticles as carrier for removal of Cr (VI) from aqueous solution. Sci. Total Environ. 2020, 699, 134334. [Google Scholar] [CrossRef]
- Nomngongo, P.N.; Ngila, J.C. Multivariate optimization of dual-bed solid phase extraction for preconcentration of Ag, Al, As and Cr in gasoline prior to inductively coupled plasma optical emission spectrometric determination. Fuel 2015, 139, 285–291. [Google Scholar] [CrossRef]
- Mitreva, M.; Dakova, I.; Karadjova, I. Iron (II) ion imprinted polymer for Fe (II)/Fe (III) speciation in wine. Microchem. J. 2017, 132, 238–244. [Google Scholar] [CrossRef]
- Liu, P.; An, H.; Ren, Y.; Feng, J.; Ma, J. Selective recognition mechanism of molybdenum (VI) ions binding onto ion-imprinted particle in the water. Chem. Eng. J. 2018, 349, 176–183. [Google Scholar] [CrossRef]
- Xie, C.; Wei, S.; Chen, D.; Lan, W.; Yan, Z.; Wang, Z. Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd (II) adsorption and detection. RSC Adv. 2019, 9, 23474–23483. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, L.L.G.; Ferreira, G.O.; Suquila, F.A.C.; de Almeida, F.G.; Bertoldo, L.A.; Segatelli, M.G.; Ribeiro, E.S.; Tarley, C.R.T. Development of new analytical method for preconcentration/speciation of inorganic antimony in bottled mineral water using FIA-HG AAS system and SiO2/Al2O3/SnO2 ternary oxide. Food Chem. 2019, 294, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Gürkan, R.; Eser, M. Application of ultrasonic-assisted cloud point extraction/flame atomic absorption spectrometry (UA-CPE/FAAS) for preconcentration and determination of low levels of antimony in some beverage samples. J. Iran. Chem. Soc. 2016, 13, 1579–1591. [Google Scholar] [CrossRef]
- Karlıdağ, N.E.; Toprak, M.; Tekin, Z.; Bakırdere, S. Zirconium nanoparticles based ligandless dispersive solid phase extraction for the determination of antimony in bergamot and mint tea samples by slotted quartz tube-flame atomic absorption spectrophotometry. J. Food Compos. Anal. 2020, 92, 103583. [Google Scholar] [CrossRef]
- You, N.; Liu, T.-H.; Fan, H.-T.; Shen, H. An efficient mercapto-functionalized organic—inorganic hybrid sorbent for selective separation and preconcentration of antimony (III) in water samples. RSC Adv. 2018, 8, 5106–5113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ma, J.; Na, X.; Shao, Y.; Liu, J.; Mao, X.; Chen, G.; Tian, D.; Qian, Y. A portable and filed optical emission spectrometry coupled with microplasma trap for high sensitivity analysis of arsenic and antimony simultaneously. Talanta 2020, 218, 121161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mei, M.; Ouyang, T.; Huang, X. Preparation of a new polymeric ionic liquid-based sorbent for stir cake sorptive extraction of trace antimony in environmental water samples. Talanta 2016, 161, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Yang, C.; Yu, P.; Zheng, H.; Liu, Z.; Xing, Z.; Hu, S. Determination of antimony in water samples by hydride generation coupled with atmospheric pressure glow discharge atomic emission spectrometry. J. Anal. At. Spectrom. 2019, 34, 331–337. [Google Scholar] [CrossRef]
- Zmit, B.; Belhaneche-Bensemra, N. Antimony leaching from PET plastic into bottled water in Algerian market. Environ. Monit. Assess. 2019, 191, 749. [Google Scholar] [CrossRef]
- Khan, M.W.; Khalid, M.; HabibUllah, H.U.R.; Ayaz, Y.; Ullah, F.; Jadoon, M.A.; Afridi, S. Detection of Arsenic (As), Antimony (Sb) and Bacterial Contamination in Drinking Water. Bio Form. 2017, 9, 133–238. [Google Scholar]
- Dos Santos, G.S.; Silva, L.O.B.; Santos, A.F.; da Silva, E.G.P.; Dos Santos, W.N.L. Analytical strategies for determination and environmental impact assessment of inorganic antimony species in natural waters using hydride generation atomic fluorescence spectrometry (HG-AFS). J. Braz. Chem. Soc. 2018, 29, 185–190. [Google Scholar] [CrossRef]
- Büyükpınar, C.; Bodur, S.; San, N.; Komesli, O.T.; Bakırdere, S. Ultrasonic assisted glass bead loaded gas liquid separator-photochemical vapor generation-T-shaped slotted quartz tube-flame atomic absorption spectrophotometry system for antimony determination in tap water and wastewater samples. Chem. Pap. 2021, 75, 1377–1386. [Google Scholar]
- Du, X.; Qu, F.; Liang, H.; Li, K.; Yu, H.; Bai, L.; Li, G. Removal of antimony (III) from polluted surface water using a hybrid coagulation—flocculation—ultrafiltration (CF—UF) process. Chem. Eng. J. 2014, 254, 293–301. [Google Scholar] [CrossRef]
- Mitrakas, M.; Mantha, Z.; Tzollas, N.; Stylianou, S.; Katsoyiannis, I.; Zouboulis, A. Removal of Antimony Species, Sb (III)/Sb (V), from Water by Using Iron Coagulants. Water 2018, 10, 1328. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Le, X.C.; McKnight-Whitford, A.; Xia, Y.; Wu, F.; Elswick, E.; Johnson, C.C.; Zhu, C. Antimony speciation and contamination of waters in the Xikuangshan antimony mining and smelting area, China. Environ. Geochem. Health 2010, 32, 401–413. [Google Scholar] [CrossRef]
Parameters | Lower Level (−) | Central Point (0) | Higher Level (+) |
---|---|---|---|
Adsorbent Mass (mg) | 20 | 35 | 50 |
Elution time (min) | 5 | 17.5 | 30 |
Eluent volume (mL) | 7 | 8.5 | 10 |
Eluent concentration (M) | 1 | 3 | 5 |
Sonication time (min) | 5 | 22.5 | 40 |
pH | 2 | 5.5 | 9 |
Sb(III)-IIP | NIP | |
---|---|---|
Regression equation | qe/Ce = −6.1852x + 82.7 (Curve A-1) | qe/Ce = −0.2333 + 3.7493 |
R2 | 0.9981 | 0.9557 |
Kd (mg/L) | 0.162 | 4.29 |
qmax (mg/g) | 13.4 | 16.1 |
Regression equation (Curve A-2) | qe/Ce = −0.2282x + 15.04 | |
R2 | 0.9215 | |
Kd (mg/L) | 3.05 | |
qmax (mg/g) | 47.3 |
Isotherms | Parameters | Sb(III)-IIP | Non-IIP |
---|---|---|---|
Langmuir | qmax (mg/g) | 47.4 | 16.8 |
KL | 1.81 | 0.29 | |
R2 | 0.9969 | 0.9912 | |
Freundlich | Kf | 33.6 | 3.74 |
n | 1.73 | 1.4 | |
R2 | 0.9806 | 0.9869 |
Metal Ions | qe (mg/g) | Distribution Ratio (D, mL/g) | β | βr | α | |||
---|---|---|---|---|---|---|---|---|
IIP | NIP | IIP | NIP | IIP | NIP | |||
Sb | 46.1 | 16.6 | 22.2 | 2.19 | 2.78 | |||
Al | 6.52 | 7.97 | 0.69 | 0.87 | 32.3 | 2.52 | 12.8 | 0.82 |
Cd | 8.41 | 8.53 | 0.92 | 0.94 | 24.1 | 2.33 | 10.3 | 0.99 |
Cu | 3.70 | 8.46 | 0.37 | 0.93 | 60.0 | 2.35 | 25.5 | 0.44 |
Sn | 11.2 | 12.1 | 2.19 | 1.44 | 10.2 | 1.52 | 6.67 | 0.93 |
Zn | 6.24 | 7.47 | 0.66 | 0.80 | 33.9 | 2.71 | 12.5 | 0.83 |
Analyte | Adsorbent | Linear Range (μg L−1) | LOD (μg L−1) | LOQ (μg L−1) | PF | RSD (%) | Refs |
---|---|---|---|---|---|---|---|
Sb | PAN | 0.027–650 | 0.008 | 0.027 | 150 | 1.8–4.1 | [17] |
Sb(III) | SiO2/Al2O3/SnO2 | 0.50–5.00 | 0.17 | 0.56 | 136 | - | [53] |
Sb(III) | TAR | 0.5–180 | 0.13 | 0.43 | - | 0.9 | [54] |
Sb | Zr-NPs | 30–250 | 8.0 | 26.8 | - | - | [55] |
Sb(III) | IIP | - | 0.04 | 0.13 | - | 2.3 | [42] |
Sb, Sb(III) | Mercapto-functionalised hybrid sorbent | - | 0.0025 | 0.008 | - | 1.6 | [56] |
Sb(III) | TAC | 0.93–180 | 0.28 | 0.93 | - | 3.6 | [54] |
Sb | IIP | - | 0.0039 | 0.13 | - | 3.1 | [44] |
Sb | DBD | 1–200 | 0.2 | 0.67 | - | 3 | [57] |
Sb(III) | POIP | - | 0.006 | 0.02 | 100 | 4.2 | [2] |
Sb | PIL | 0.20–200 | 0.084 | 0.28 | - | <9 | [58] |
Sb(III) | IIP-Fe3O4@SiO2@CNFs | 0.44–100 | 0.13 | 0.44 | 71.3 | 2.4 and 4.7 | This work |
Country | Matrix | Concentration of Sb (μg L−1) | Refs |
---|---|---|---|
Mexico | Drinking water | 0.28–2.30 | [12] |
China | Ground water | 6–30,000 | [59] |
Algeria | Drinking water | 0.50–1.12 | [60] |
Pakistan | Drinking water | 28 | [61] |
Brazil | Mineral and surface water | 0.26–0.30 and 0.41–1.23 | [62] |
Brazil | Mineral water | 0.54–1.04 | [53] |
Turkey | Wastewater | 300–2000 | [63] |
China | Surface water | 30–150 | [64] |
Greece | Tap water | 10–100 | [65] |
China | Wastewater | 330–11,400 | [66] |
South Africa | Dam and river water | 9.7–88.7 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakavula, S.; Biata, N.R.; Dimpe, K.M.; Pakade, V.E.; Nomngongo, P.N. Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices. Polymers 2022, 14, 21. https://doi.org/10.3390/polym14010021
Jakavula S, Biata NR, Dimpe KM, Pakade VE, Nomngongo PN. Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices. Polymers. 2022; 14(1):21. https://doi.org/10.3390/polym14010021
Chicago/Turabian StyleJakavula, Silindokuhle, Nkositetile Raphael Biata, Kgogobi M. Dimpe, Vusumzi Emmanuel Pakade, and Philiswa Nosizo Nomngongo. 2022. "Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices" Polymers 14, no. 1: 21. https://doi.org/10.3390/polym14010021
APA StyleJakavula, S., Biata, N. R., Dimpe, K. M., Pakade, V. E., & Nomngongo, P. N. (2022). Magnetic Ion Imprinted Polymers (MIIPs) for Selective Extraction and Preconcentration of Sb(III) from Environmental Matrices. Polymers, 14(1), 21. https://doi.org/10.3390/polym14010021