Mechanism of Thermochromic and Self-Repairing of Waterborne Wood Coatings by Synergistic Action of Waterborne Acrylic Microcapsules and Fluorane Microcapsules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Microcapsules
2.3. Preparation of Thermochromic Self-Repairing Dual-Function Coating Film
2.4. Testing and Characterization
3. Results and Discussion
3.1. SEM and FTIR of the Microcapsules
3.2. Orthogonal Experimental Analysis
3.3. Single-Factor Experiment Optimization of Fluorane Microcapsule Content
3.4. Analysis of the Discoloration Mechanism of Fluorane Microcapsules by Synergistic Effect of Waterborne Acrylic Microcapsules
3.5. Aging Resistance Test of Coating Film
3.6. Self-Repairing Experiment of Coating Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Espinosa, L.; Prieto, F.; Brancheriau, L.; Lasaygues, P. Effect of wood anisotropy in ultrasonic wave propagation: A ray-tracing approach. Ultrasonics 2019, 91, 242–251. [Google Scholar] [CrossRef]
- Tiryaki, S.; Bardak, S.; Aydin, A.; Nemli, G. Analysis of volumetric swelling and shrinkage of heat treated woods: Experimental and artificial neural network modeling approach. Maderas-Cienc. Tecnol. 2016, 18, 477–492. [Google Scholar] [CrossRef] [Green Version]
- Livers, B.; Lininger, K.; Kramer, N.; Sendrowski, A. Porosity problems: Comparing and reviewing methods for estimating porosity and volume of wood jams in the field. Earth. Surf. Proc. Land. 2020, 45, 3336–3353. [Google Scholar] [CrossRef]
- Panek, M.; Oberhofnerova, E.; Zeidler, A.; Sedivka, P. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings 2017, 7, 172. [Google Scholar] [CrossRef] [Green Version]
- Naik, D.; Wazarkar, K.; Sabnis, A. UV-curable flame-retardant coatings based on phosphorous and silicon containing oligomers. J. Coat. Technol. Res. 2019, 16, 733–743. [Google Scholar] [CrossRef]
- Agnol, L.; Dias, F.; Ornaghi, H.; Sangermano, M.; Bianchi, O. UV-curable waterborne polyurethane coatings: A state-of-the-art and recent advances review. Prog. Org. Coat. 2021, 154, 106156. [Google Scholar] [CrossRef]
- Du, W.; Yu, J.; Gu, S.; Wang, R.; Li, J.; Han, X.; Liu, Q. Effect of temperatures on self-healing capabilities of concrete with different shell composition microcapsules containing toluene-di-isocyanate. Constr. Build. Mater. 2020, 247, UNSP118575. [Google Scholar] [CrossRef]
- Wu, J.; Weir, M.; Melo, M.; Xu, H. Development of novel self-healing and antibacterial dental composite containing calcium phosphate nanoparticles. J. Dent. 2015, 43, 317–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ataei, S.; Hassan, A.; Azari, P.; Pingguan-Murphy, B.; Yahya, R.; Basirun, W.; Shahabudin, N. Electrosprayed PMMA microcapsules containing green soybean oil-based acrylated epoxy and a thiol: A novel resin for smart self-healing coatings. Smart Mater. Struct. 2020, 29, 085037. [Google Scholar] [CrossRef]
- Geng, X.; Gao, Y.; Wang, N.; Han, N.; Zhang, X.; Li, W. Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs. Chem. Eng. J. 2021, 408, 127276. [Google Scholar] [CrossRef]
- Pedaballi, S.; Li, C.; Song, Y. Dispersion of microcapsules for the improved thermochromic performance of smart coatings. Rsc Adv. 2019, 9, 24175–24183. [Google Scholar] [CrossRef] [Green Version]
- Cao, L.; Fang, L.; Li, X.; Chen, S.; Lu, C.; Xu, Z. Chameleon inspired layer-by-layer assembly of thermochromic microcapsules to achieve controllable multiple-color change. Smart Mater. Struct. 2020, 29, 04LT02. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, S.; Wang, L.; Zhou, H. Research on the behaviors of extending thermochromic colors for a new thermochromic microcapsule. J. Text. Inst. 2020, 111, 1097–1105. [Google Scholar] [CrossRef]
- Wu, T.; Yin, T.; Hu, X.; Nian, G.; Qu, S.; Yang, W. Thermochromic hydrogel for camouflage and soft display. Adv. Opt. Mater. 2020, 8, 2000031. [Google Scholar] [CrossRef]
- Yan, X.; Tao, Y.; Qian, X. Preparation and optimization of waterborne acrylic core microcapsules for waterborne wood coatings and comparison with epoxy resin core. Polymers 2020, 12, 2366. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, X. Mechanical and optical properties of thermochromic reversible waterborne primer film on Tilia europaea with 1,2-Benzo-6-diethylaminofluorane based microcapsules. Polymers 2020, 12, 2062. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Effect of microcapsules with different core-wall ratios on properties of waterborne primer coating for European Linden. Coatings 2020, 10, 826. [Google Scholar] [CrossRef]
- GB/T 3181-1995; Colour Standard for Paint Film. Standardization Administration of the People’s Republic of China: Beijing, China, 1995. (In Chinese)
- GB/T 6739-2006; Paints and Varnishes-Determination of Film Hardness by Pencil Test. Standardization Administration of the People’s Republic of China: Beijing, China, 2006. (In Chinese)
- GB/T 4893.4-2013; Test of Surface Coatings of Furniture-Part 4: Determination of Adhesion-Cross Cut. Standardization Administration of the People’s Republic of China: Beijing, China, 2013. (In Chinese)
- GB/T 1732-1993; Determination of Impact Resistance of Film. Standardization Administration of the People’s Republic of China: Beijing, China, 1993. (In Chinese)
- GB/T 4893.1-2005Furniture-Assessment of Surface Resistance to Cold Liquids; Standardization Administration of the People’s Republic of China: Beijing, China, 2005.
- Duan, Y.; Cheng, Y.; Sui, G.; Zhu, Y.; Wang, X.; Guo, Y.; Wang, Z. Lignin impacts on the lignin-urea-formaldehyde copolymer resin and the reaction mechanism. Chem. J. Chin. Univ. 2019, 40, 1058–1064. [Google Scholar]
- Jovanovic, V.; Samarzija-Jovanovic, S.; Petkovic, B.; Milicevic, Z.; Markovic, G.; Marinovic-Cincovic, M. Biocomposites based on cellulose and starch modified urea-formaldehyde resin: Hydrolytic, thermal, and radiation stability. Polym. Composite. 2019, 40, 1287–1294. [Google Scholar] [CrossRef]
- Hillewaere, X.; Teixeira, R.; Nguyen, L.; Ramos, J.; Rahier, H.; Du Prez, F. Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry. Adv. Funct. Mater. 2014, 24, 5575–5583. [Google Scholar] [CrossRef]
- Barapatre, A.; Aadil, K.R.; Jha, H. Biodegradation of malachite green by the ligninolytic fungus aspergillus flavus. Clean-Soil Air Water 2017, 45, 1600045. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Li, L.; Bian, L.; Yang, W.; Meng, Q. The novel thermochromic and energy-storage microcapsules with significant extension of color change range to different tones. J. Macromol. Sci. Part A 2019, 56, 588–596. [Google Scholar] [CrossRef]
- Vieira, A.; Santana, S.; Bezerra, C.; Silva, H.; Chaves, J.; Melo, J.; Silva, E.; Airoldi, C. Removal of textile dyes from aqueous solution by babassu coconut epicarp (Orbignya speciosa). Chem. Eng. J. 2011, 173, 334–340. [Google Scholar] [CrossRef]
- Raditoiu, V.; Raditoiu, A.; Wagner, L.; Amariutei, V.; Nicolae, C. Thermochromic systems based on complexes of some triarylmethane dyes. Rev. Chim-Bucharest. 2013, 64, 147–151. [Google Scholar]
- Santana, S.A.A.; Vieira, A.P.; da Silva, E.C.; Melo, J.C.P.; Airoldi, C. Immobilization of ethylenesulfide on babassu coconut epicarp and mesocarp for divalent cation sorption. J. Hazard. Mater. 2010, 174, 714–719. [Google Scholar] [CrossRef]
- Saravanan, D.; Lakshmi, S.; Raja, K.; Vasanthi, N. Biopolishing of cotton fabric with fungal cellulase and its effect on the morphology of cotton fibres. Indian J. Fibre Text. 2013, 38, 156–160. [Google Scholar]
- Relosi, N.; Neuwald, O.; Zattera, A.; Piazza, D.; Kunst, S.; Birriel, E. Effect of addition of clay minerals on the properties of epoxy/polyester powder coatings. Polimeros 2018, 28, 355–367. [Google Scholar] [CrossRef]
- Kulcar, R.; Friskovec, M.; Hauptman, N.; Vesel, A.; Gunde, M. Colorimetric properties of reversible thermochromic printing inks. Dye. Pigment. 2010, 86, 271–277. [Google Scholar] [CrossRef]
- Yan, X.; Wang, L.; Qian, X. Effect of urea-formaldehyde-coated epoxy microcapsule modification on gloss, toughness and chromatic distortion of acrylic copolymers waterborne coating. Coatings 2019, 9, 239. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Li, B.; Tian, Y.; Lu, T.; Zhu, X.; Sun, G.; Gilabert, F. Aided regeneration system of aged asphalt binder based on microcapsule technology. Constr. Build. Mater. 2019, 201, 571–579. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Duan, H.; Wu, C.; Zhang, S. Long-term photo oxidation aging investigation of temperature-regulating bitumen based on thermochromic principle. Fuel 2021, 286, 119403. [Google Scholar] [CrossRef]
- Yu, F.; Gao, J.; Liu, C.; Chen, Y.; Zhong, G.; Hodges, C.; Chen, M.; Zhang, H. Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating. Prog. Org. Coat. 2020, 141, 105556. [Google Scholar] [CrossRef]
- Li, H.; Shi, L.; Liu, X.; Niu, W.; Xu, G. Determination of isocyanates by capillary electrophoresis with tris(2,2′-bipyridine) ruthenium(II) electrochemiluminescence. Electrophoresis 2009, 30, 3926–3931. [Google Scholar] [CrossRef] [PubMed]
Sample Number (#) | Content of Fluorane Microcapsules (%) | Content of Waterborne Acrylic Resin Microcapsules (%) | Microcapsule Adding Method |
---|---|---|---|
1 | 10.0 | 5.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the primer |
2 | 10.0 | 15.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the topcoat |
3 | 20.0 | 5.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the topcoat |
4 | 20.0 | 15.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the primer |
Sample Number (#) | Content of Fluorane Microcapsules (%) | Content of Waterborne Acrylic Resin Microcapsules (%) | Mass of Fluorane Microcapsules (g) | Mass of Waterborne Acrylic Resin Microcapsules (g) | Primer (g) | Topcoat (g) |
---|---|---|---|---|---|---|
1 | 10.0 | 5.0 | 0.2 | 0.1 | 1.7 | 2.0 |
2 | 10.0 | 15.0 | 0.2 | 0.3 | 2.0 | 1.5 |
3 | 20.0 | 5.0 | 0.4 | 0.1 | 2.0 | 1.5 |
4 | 20.0 | 15.0 | 0.4 | 0.3 | 1.3 | 2.0 |
5 | 0 | 5.0 | 0 | 0.1 | 1.9 | 2.0 |
6 | 5.0 | 5.0 | 0.1 | 0.1 | 1.8 | 2.0 |
7 | 15.0 | 5.0 | 0.3 | 0.1 | 1.6 | 2.0 |
8 | 20.0 | 5.0 | 0.4 | 0.1 | 1.5 | 2.0 |
9 | 25.0 | 5.0 | 0.5 | 0.1 | 1.4 | 2.0 |
10 | 30.0 | 5.0 | 0.6 | 0.1 | 1.3 | 2.0 |
11 | 0 | 0 | 0 | 0 | 2.0 | 2.0 |
12 | 15.0 | 0 | 0.3 | 0 | 1.7 | 2.0 |
Sample (#) | Content of Fluorane Microcapsules (%) | Content of Waterborne Acrylic Resin Microcapsules (%) | Method of Adding Microcapsules | Color Difference |
---|---|---|---|---|
1 | 10.0 | 5.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the primer | 68.3 |
2 | 10.0 | 15.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the topcoat | 55.6 |
3 | 20.0 | 5.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the topcoat | 71.0 |
4 | 20.0 | 15.0 | Fluorane microcapsules and waterborne acrylic resin microcapsules were added to the primer | 81.2 |
Mean value 1 | 61.950 | 69.650 | 74.750 | |
Mean value 2 | 76.100 | 68.400 | 63.300 | |
Range | 14.150 | 1.250 | 11.450 |
Sample Number (#) | Content of Fluorane Microcapsule (%) | Hardness (H) | Adhesion (Grade) | Impact Resistance (kg∙cm) | Elongation at Break (%) |
---|---|---|---|---|---|
5 | 0 | 2H | 0 | 6 | 35.0 |
6 | 5.0 | 2H | 0 | 7 | 37.9 |
1 | 10.0 | 3H | 0 | 8 | 25.9 |
7 | 15.0 | 4H | 0 | 12 | 17.7 |
8 | 20.0 | 4H | 0 | 12 | 9.6 |
9 | 25.0 | 5H | 0 | 13 | 7.0 |
10 | 30.0 | 5H | 0 | 13 | 2.2 |
Sample (#) | Scratch Width before Repair (µm) | Scratch Width after Repair (µm) | Scratch Width Difference before and after Repair (µm) | Self-Repairing Rate (%) |
---|---|---|---|---|
5 | 15.3 | 13.8 | 1.5 | 9.8 |
7 | 32.2 | 13.3 | 18.8 | 58.4 |
11 | 8.8 | 8.1 | 0.7 | 7.9 |
12 | 16.3 | 16.1 | 0.2 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhao, W.; Wang, L. Mechanism of Thermochromic and Self-Repairing of Waterborne Wood Coatings by Synergistic Action of Waterborne Acrylic Microcapsules and Fluorane Microcapsules. Polymers 2022, 14, 56. https://doi.org/10.3390/polym14010056
Yan X, Zhao W, Wang L. Mechanism of Thermochromic and Self-Repairing of Waterborne Wood Coatings by Synergistic Action of Waterborne Acrylic Microcapsules and Fluorane Microcapsules. Polymers. 2022; 14(1):56. https://doi.org/10.3390/polym14010056
Chicago/Turabian StyleYan, Xiaoxing, Wenting Zhao, and Lin Wang. 2022. "Mechanism of Thermochromic and Self-Repairing of Waterborne Wood Coatings by Synergistic Action of Waterborne Acrylic Microcapsules and Fluorane Microcapsules" Polymers 14, no. 1: 56. https://doi.org/10.3390/polym14010056
APA StyleYan, X., Zhao, W., & Wang, L. (2022). Mechanism of Thermochromic and Self-Repairing of Waterborne Wood Coatings by Synergistic Action of Waterborne Acrylic Microcapsules and Fluorane Microcapsules. Polymers, 14(1), 56. https://doi.org/10.3390/polym14010056