Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials
Abstract
:1. Introduction
2. Material and Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beuer, F.; Schweiger, J.; Edelhoff, D. Digital dentistry: An overview of recent developments for CAD/CAM generated restorations. Br. Dent. J. 2008, 204, 505–511. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef]
- Spitznagel, F.A.; Boldt, J.; Gierthmuehlen, P.C. CAD/CAM Ceramic Restorative Materials for Natural Teeth. J. Dent. Res. 2018, 97, 1082–1091. [Google Scholar] [CrossRef] [PubMed]
- Lambert, F.; Eldafrawy, M.; Bekaert, S.; Mainjot, A. One-tooth one-time (1T1T), immediate loading of posterior single implants with the final crown: 2-year results of a case series. Int. J. Oral Implant. 2020, 13, 369–383. [Google Scholar]
- Blatz, M.B.; Conejo, J. The Current State of Chairside Digital Dentistry and Materials. Dent. Clin. N. Am. 2019, 63, 175–197. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.A. Materials in digital dentistry-A review. J. Esthet. Restor. Dent. 2020, 32, 171–181. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- Ritter, A.V.; Sulaiman, T.A.; Rodgers, B.M.; Baratto-Filho, F.; Cunha, L.; Gonzaga, C.C.; Correr, G.M. Effect of surface treatment and cement type on dentin bonding of processed resin composite. Am. J. Dent. 2019, 32, 271–275. [Google Scholar]
- Coldea, A.; Swain, M.V.; Thiel, N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2013, 29, 419–426. [Google Scholar] [CrossRef]
- Sailer, I.; Makarov, N.A.; Thoma, D.S.; Zwahlen, M.; Pjetursson, B.E. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: Single crowns (SCs). Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, 603–623. [Google Scholar] [CrossRef] [Green Version]
- Tinschert, J. Oxidkeramiken und CAD/CAM-Technologien: Atlas für Klinik, Labortechnik und Werkstoffkunde; Deutscher Zahnärzte: Köln, Germany, 2007. [Google Scholar]
- Seidel, K.; El-Sabbagh, B.; Brandt, S.; Güth, J.F. Chance oder Risiko? Monolithische zahnfarbene Restaurationen—Kritisch hinterfragt. Wissen Kompakt 2021, 15, 169–182. [Google Scholar] [CrossRef]
- Sieper, K.; Wille, S.; Kern, M. Fracture strength of lithium disilicate crowns compared to polymer-infiltrated ceramic-network and zirconia reinforced lithium silicate crowns. J. Mech. Behav. Biomed. Mater. 2017, 74, 342–348. [Google Scholar] [CrossRef]
- Pfeilschifter, M.; Preis, V.; Behr, M.; Rosentritt, M. Edge strength of CAD/CAM materials. J. Dent. 2018, 74, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Nordahl, N.; Vult von Steyern, P.; Larsson, C. Fracture strength of ceramic monolithic crown systems of different thickness. J. Oral Sci. 2015, 57, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.; Egli, G.; Zaruba, M.; Mehl, A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent. Mater. J. 2017, 36, 778–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spitznagel, F.A.; Scholz, K.J.; Strub, J.R.; Vach, K.; Gierthmuehlen, P.C. Polymer-infiltrated ceramic CAD/CAM inlays and partial coverage restorations: 3-year results of a prospective clinical study over 5 years. Clin. Oral Investig. 2018, 22, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Spitznagel, F.A.; Scholz, K.J.; Vach, K.; Gierthmuehlen, P.C. Monolithic Polymer-Infiltrated Ceramic Network CAD/CAM Single Crowns: Three-Year Mid-Term Results of a Prospective Clinical Study. Int. J. Prosthodont. 2020, 33, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Peng, L.; Xiong, F.; Lin, X.Y.; Zhang, P.; Lin, Z.T.; Wu, B.L. A 3-year clinical evaluation of endodontically treated posterior teeth restored with two different materials using the CEREC AC chair-side system. J. Prosthet. Dent. 2018, 119, 363–368. [Google Scholar] [CrossRef]
- Edelhoff, D.; Liebermann, A.; Beuer, F.; Stimmelmayr, M.; Güth, J.F. Minimally invasive treatment options in fixed prosthodontics. Quintessence Int. 2016, 47, 207–216. [Google Scholar] [CrossRef]
- International Organization for Standardization; Technical Committee ISO/TC 106, Dentistry; European Committee for Standardization; Technical Committee CEN/TC 55 "Dentistry"; British Standards Institution. ISO 6872:2015; Dentistry—Ceramic Materials. European Committee for Standardization: Brussels, Belgium, 2015.
- Dikicier, S.; Ayyildiz, S.; Ozen, J.; Sipahi, C. Influence of core thickness and artificial aging on the biaxial flexural strength of different all-ceramic materials: An in-vitro study. Dent. Mater. J. 2017, 36, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, V.F.; Sforza, C.; Serrao, G.; Dellavia, C.; Tartaglia, G.M. Single tooth bite forces in healthy young adults. J. Oral Rehabil. 2004, 31, 18–22. [Google Scholar] [CrossRef]
- Reitemeier, B.; Biffar, R. Einführung in die Zahnmedizin; Thieme: Stuttgart, Germany, 2006; pp. XIII, 305 S. [Google Scholar]
- Peutzfeldt, A.; Sahafi, A.; Flury, S. Bonding of restorative materials to dentin with various luting agents. Oper. Dent. 2011, 36, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Edelhoff, D.; Ozcan, M. To what extent does the longevity of fixed dental prostheses depend on the function of the cement? Working Group 4 materials: Cementation. Clin. Oral Implant. Res. 2007, 18 (Suppl. 3), 193–204. [Google Scholar] [CrossRef]
- Rosentritt, M.; Preis, V.; Behr, M.; Hahnel, S. Influence of preparation, fitting, and cementation on the vitro performance and fracture resistance of CAD/CAM crowns. J. Dent. 2017, 65, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Awad, D.; Stawarczyk, B.; Liebermann, A.; Ilie, N. Translucency of esthetic dental restorative CAD/CAM materials and composite resins with respect to thickness and surface roughness. J. Prosthet. Dent. 2015, 113, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Schweiger, J.; Güth, J.F.; Schubert, O.; Sciuk, T.; Beuer, F.; Erdelt, K.J. Predictable esthetics in all-ceramic restorations: Translucency as a function of material thickness. Int. J. Comput. Dent. 2021, 24, 147–155. [Google Scholar]
- Wang, F.; Takahashi, H.; Iwasaki, N. Translucency of dental ceramics with different thicknesses. J. Prosthet. Dent. 2013, 110, 14–20. [Google Scholar] [CrossRef]
- Güth, J.F.; Runkel, C.; Beuer, F.; Stimmelmayr, M.; Edelhoff, D.; Keul, C. Accuracy of five intraoral scanners compared to indirect digitalization. Clin. Oral Investig. 2017, 21, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Kihara, H.; Hatakeyama, W.; Komine, F.; Takafuji, K.; Takahashi, T.; Yokota, J.; Oriso, K.; Kondo, H. Accuracy and practicality of intraoral scanner in dentistry: A literature review. J. Prosthodont. Res. 2020, 64, 109–113. [Google Scholar] [CrossRef]
- Liberato, W.F.; Barreto, I.C.; Costa, P.P.; de Almeida, C.C.; Pimentel, W.; Tiossi, R. A comparison between visual, intraoral scanner, and spectrophotometer shade matching: A clinical study. J. Prosthet. Dent. 2019, 121, 271–275. [Google Scholar] [CrossRef]
- Michou, S.; Vannahme, C.; Bakhshandeh, A.; Ekstrand, K.R.; Benetti, A.R. Intraoral scanner featuring transillumination for proximal caries detection. An in vitro validation study on permanent posterior teeth. J. Dent. 2021, 103841. [Google Scholar] [CrossRef] [PubMed]
Material Thickness | Flexural Strength | |||||
---|---|---|---|---|---|---|
0.4 mm | 0.7 mm | 1.0 mm | 1.3 mm | 1.6 mm | ||
material | mean ± SD (N) | mean ± SD (N) | mean ± SD (N) | mean ± SD (N) | mean ± SD (N) | mean ± SD (MPa) |
Lava Ultimate (LU) | 21.3 ± 3.1 “a” | 58.9 ± 9.3 “a” | 132.1 ± 12.8 “a” | 218.2 ± 35.0 “a” | 289.8 ± 35.0 “a” | 223.3 ± 20.0 |
GC Smart (GC) | 27.7 ± 47.0 “a” | 74.6 ± 10.2 “a” | 162.1 ± 18.5 “a” | 254.3 ± 35.1 “b” | 408.2 ± 44.9 “b” | 276.3 ± 41.0 |
Vita Enamic (VE) | 13.3 ± 1.0 “a” | 32,6 ± 7.9 “a” | 88.8 ± 7.3 “a” | 153.4 ± 14.7 “a” | 230.0 ± 20.5 “a” | 132.4 ± 10.2 |
Telio CAD (TC) | 32.3 ± 16.9 “a” | 69.2 ± 16.0 “a” | 122.5 ± 19.1 “a” | 204.0 ± 29.5 “a” | 315.5 ± 22.5 “a” | 187.8 ± 27.6 |
Material | Linear | Quadratic | Cubic |
---|---|---|---|
Lava Ultimate (LU) | 0.886 | 0.944 | 0.947 * |
GC Smart (GC) | 0.886 | 0.971 * | 0.971 * |
Enamic (VE) | 0.888 | 0.981 * | 0.981 * |
Telio CAD (TC) | 0.896 | 0.969 | 0.971 * |
Material | Cubic “Fracture Load Coefficients” | |||
---|---|---|---|---|
b0 | b1 | b2 | b3 | |
Lava Ultimate (LU) | 1.1 ± 0.5 | −45.1 ± 44.6 | 230.0 ± 70.0 | −53.1 ± 28.8 |
GC Smart (GC) | −0.57 ± 7.2 | 31.0 ± 42.5 | 95.8 ± 66.7 | 27.3 ± 27.5 |
Enamic (VE) | 1.0 ± 3.5 | −30.7 ± 20.1 | 129.7 ± 31.3 | −13.0 ± 12.9 |
Telio CAD (TC) | 0.0 ± 5.5 | 69.9 ± 51.3 | 9.8 ± 21.2 | 43.7 ± 5.5 |
Material-Dependent Calculated Fracture Loads | Material Thickness (in mm) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 | |
Lava Ultimate (LU) (in N) | 6.9 | 16.5 | 29.4 | 45.4 | 64.1 | 85.1 | 108.1 | 132.9 | 159.2 | 186.5 | 214.5 | 243.1 | 271.8 | 300.3 | 328.2 | 355.4 | 381.5 | 406.1 |
GC Smart (GC) (in N) | 18.1 | 28.9 | 42.3 | 58.4 | 77.4 | 99.5 | 124.8 | 153.5 | 185.8 | 221.8 | 261.6 | 305.5 | 353.6 | 406.1 | 463.2 | 524.9 | 591.5 | 663.1 |
Enamic (VE) (in N) | 3.2 | 8.7 | 16.5 | 26.5 | 38.7 | 52.9 | 69.0 | 87.1 | 107.0 | 128.6 | 151.8 | 176.7 | 203.0 | 230.8 | 259.9 | 290.3 | 321.9 | 354.6 |
Telio CAD (TC) (in N) | 23.0 | 32.3 | 42.9 | 54.9 | 68.7 | 84.5 | 102.7 | 123.4 | 146.8 | 173.4 | 203.3 | 236.8 | 274.2 | 315.7 | 361.6 | 412.1 | 467.6 | 528.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Graf, T.; Schweiger, J.; Güth, J.-F.; Sciuk, T.; Schubert, O.; Erdelt, K.-J. Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers 2022, 14, 58. https://doi.org/10.3390/polym14010058
Graf T, Schweiger J, Güth J-F, Sciuk T, Schubert O, Erdelt K-J. Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers. 2022; 14(1):58. https://doi.org/10.3390/polym14010058
Chicago/Turabian StyleGraf, Tobias, Josef Schweiger, Jan-Frederik Güth, Thomas Sciuk, Oliver Schubert, and Kurt-Jürgen Erdelt. 2022. "Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials" Polymers 14, no. 1: 58. https://doi.org/10.3390/polym14010058
APA StyleGraf, T., Schweiger, J., Güth, J. -F., Sciuk, T., Schubert, O., & Erdelt, K. -J. (2022). Arithmetic Relationship between Fracture Load and Material Thickness of Resin-Based CAD-CAM Restorative Materials. Polymers, 14(1), 58. https://doi.org/10.3390/polym14010058