Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation
Abstract
:1. Introduction
2. Experiment
2.1. Materials and Reagents
2.2. Preparation of CFs-Based Composites
2.2.1. Preparation of PPy@CFs Composite
2.2.2. Preparation of PB@CFs Composite
2.2.3. Preparation of PB/PPy@CFs Composite
2.3. Calculation of PB Deposition Ratio
2.4. Solar-Driven Water Evaporation Experiment and Characterization
2.4.1. Wettability
2.4.2. Photothermal Performance
2.4.3. Solar-Driven Interface Water Evaporation
2.4.4. Stability
2.5. SEM, XRD, FTIR, XPS and UV-Vis-NIR Spectroscopy Characterization
3. Results and Discussion
3.1. Promoting Effect of PPy on the Growth of PB
3.2. Morphology and Structure of Composites
3.2.1. SEM Observation
3.2.2. XRD Analysis
3.2.3. FTIR Analysis
3.2.4. XPS Analysis
3.2.5. UV-Vis-NIR Spectroscopy Analysis
3.3. Photothermal Conversion Properties
3.3.1. Wettability
3.3.2. Photothermal Performance
3.3.3. Water Evaporation Performance
3.3.4. Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kho, E.T.; Tan, T.H.; Lovell, E.; Wong, R.J.; Scott, J.; Amal, R. A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy Environ. 2017, 2, 204–217. [Google Scholar] [CrossRef]
- Nedosekin, D.A.; Ayyadevara, S.; Reis, R.; Galanzha, E.; Zharov, V. Correction for Lewis and Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2007, 104, 20142. [Google Scholar]
- Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Lwai, H.; Tanaka, A.; Ye, J. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: An alternative approach for solar fuel production. Angew. Chem. Int. Ed. 2014, 53, 11478–11482. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Li, Y.; Mao, M.; Mao, M.; Yue, Y.; Greaves, G.; Zhao, X. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured Ce ion substituted OMS-2 catalyst for VOCs purification. Nanoscale 2015, 7, 2633–2640. [Google Scholar] [CrossRef]
- Huang, J.; He, Y.; Hu, Y.; Wang, X. Steam generation enabled by a high efficiency solar absorber with thermal concentration. Energy 2018, 165, 1282–1291. [Google Scholar] [CrossRef]
- Sun, Z.; Li, Z.; Li, W.; Bian, F. Mesoporous cellulose/TiO2/SiO2/TiN-based nanocomposite hydrogels for efficient solar steam evaporation: Low thermal conductivity and high light-heat conversion. Cellulose 2020, 27, 481–491. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, M.; Cao, Z.; Ge, Z.; Chen, Y. Low-cost and scalable carbon bread used as an efficient solar steam generator with high performance for water desalination and purification. RSC Adv. 2021, 11, 8674–8681. [Google Scholar] [CrossRef]
- Ibrahim, I.; Bhoopal, V.; Dong, H.; Afsari, M.; Tijing, L. Biomass-based photothermal materials for interfacial solar steam generation: A review. Mater. Today Energy 2021, 21, 100716. [Google Scholar] [CrossRef]
- Wang, W.; Aleid, S.; Shi, Y.; Zhang, C.; Li, R.; Wu, M.; Zhuo, S.; Wang, P. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 2021, 5, 1873–1887. [Google Scholar] [CrossRef]
- Ding, T.; Zhou, Y.; Ong, W.L.; Ho, G.W. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 2021, 42, 178–191. [Google Scholar] [CrossRef]
- Ding, T.P.; Ho, G.W. Using the sun to co-generate electricity and freshwater. Joule 2021, 5, 1639–1641. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, Q.; Guo, W.; Liu, H.; Ma, T.; Qu, F. Co2.67S4-based photothermal membrane with high mechanical properties for efficient solar water evaporation and photothermal antibacterial applications. ACS Appl. Mater. Interfaces 2019, 11, 20820. [Google Scholar] [CrossRef]
- Wang, Z.; Yan, Y.; Shen, X.; Jin, C.; Sun, Q.; Li, H. A wood–polypyrrole composite as a photothermal conversion device for solar evaporation enhancement. J. Mater. Chem. A 2019, 7, 20706–20712. [Google Scholar] [CrossRef]
- Nai, J.; Lou, X.W. Hollow structures based on Prussian blue and its analogs for electrochemical energy storage and conversion. Adv. Mater. 2019, 31, 1706825. [Google Scholar] [CrossRef]
- Fu, G.; Liu, W.; Feng, S.; Yue, X. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48, 11567–11569. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Gao, W.; Zhang, L.; Ma, M.; Liu, T.; Du, W.; Zheng, Y.; Chen, H.; Shi, J. Enabling Prussian blue with tunable localized surface plasmon resonances: Simultaneously enhanced dual-mode imaging and tumor photothermal therapy. ACS Nano 2016, 10, 11115–11126. [Google Scholar] [CrossRef] [PubMed]
- Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997–8018. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Q.; Zhu, X.; Feng, W.; Wang, L.; Ma, L.; Zhang, G.; Zhou, J.; Li, F. Optimization of Prussian blue coated NaDyF4:x%Lu nanocomposites for multifunctional imaging-guided photothermal therapy. Adv. Funct. Mater. 2016, 26, 5120–5130. [Google Scholar] [CrossRef]
- Fang, Q.; Li, G.; Lin, H.; Liu, F. Solar-driven organic solvents purification enabled by robust cubic Prussian blue. J. Mater. Chem. A 2019, 7, 8960–8966. [Google Scholar] [CrossRef]
- Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25, 777–782. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, S.; Li, X.; Liu, S.; Duan, D.; Leng, L.; Cui, C.; Zhang, Y.; Qu, L. Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Microchim. Acta 2020, 187, 69. [Google Scholar] [CrossRef]
- Hao, L.; Ning, P.; Wang, X.; Hao, Z. Facile synthesis of phytic acid impregnated polyaniline for enhanced U(VI) adsorption. J. Chem. Eng. Data 2018, 63, 3989–3997. [Google Scholar]
- Wu, T.; Li, H.; Xue, J.; Mo, X. Photothermal welding, melting, and patterned expansion of nonwoven mats of polymer nanofibers for biomedical and printing applications. Angew. Chem. Int. Ed. 2019, 58, 16416–16421. [Google Scholar] [CrossRef]
- Dao, V.-D.; Vu, N.H.; Choi, H.-S. All day Limnobium laevigatum inspired nanogenerator self-driven via water evaporation. J. Power Sources 2020, 448, 227388. [Google Scholar] [CrossRef]
- Dao, V.-D. An experimental exploration of generating electricity from nature-inspired hierarchical evaporator: The role of electrode materials. Sci. Total Environ. 2021, 759, 143490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, B.; Liang, Y.; Yang, L.; Chen, H. Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification. Mater. Chem. Phys. 2021, 258, 123998. [Google Scholar] [CrossRef]
- Moharram, M.; Mahmoud, O. X-ray diffraction methods in the study of the effect of microwave heating on the transformation of cellulose I into cellulose II during mercerization. J. Appl. Polym. Sci. 2010, 105, 2978–2983. [Google Scholar] [CrossRef]
- Huang, J.; Qian, X.; An, X.; Li, X.; Guan, J. Double in situ fabrication of PPy@MnMoO4/cellulose fibers flexible electrodes with high electrochemical performance for supercapacitor applications. Cellulose 2020, 27, 5829–5843. [Google Scholar] [CrossRef]
- Suganthi, M.; Julie, C.; Renganathan, B.; Sastikumar, D. In situ growth of Prussian blue nanocubes on polypyrrole nanoparticles: Facile synthesis, characterization and their application as fiber optic gas sensor. J. Mater. Sci. 2018, 53, 15401–15417. [Google Scholar]
- Xu, L.; Sun, Y.; Han, B.; Su, C. Preparation of polyaniline/FeFe(CN)6 composite and its electrochemical performance as cathode material of lithium ion battery. Nano Brief Rep. Rev. 2020, 15, 2050107. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, L.; Zhong, Y.; Sui, X.; Wang, B.; Chen, Z.; Feng, X.; Xu, H.; Mao, Z. High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Org. Electron. 2019, 74, 59–68. [Google Scholar] [CrossRef]
- Li, X.; Lin, R.; Ni, G.; Xu, N.; Hu, X.; Zhou, B.; Lv, G.; Li, J.; Zhu, S.; Zhu, J. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl. Sci. Rev. 2018, 5, 70–77. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, K.; He, Y.; Li, Z.; Su, H.; Zhang, X.; Sun, Y.; Shi, W.; Ge, D. Fe3O4-based multifunctional nanospheres for amplified magnetic targeting photothermal therapy and Fenton reaction. ACS Biomater. Sci. Eng. 2018, 5, 1045–1056. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, D.; An, X.; Qian, X. Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation. Polymers 2022, 14, 6. https://doi.org/10.3390/polym14010006
Wang X, Yang D, An X, Qian X. Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation. Polymers. 2022; 14(1):6. https://doi.org/10.3390/polym14010006
Chicago/Turabian StyleWang, Xueyao, Dongmei Yang, Xianhui An, and Xueren Qian. 2022. "Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation" Polymers 14, no. 1: 6. https://doi.org/10.3390/polym14010006
APA StyleWang, X., Yang, D., An, X., & Qian, X. (2022). Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation. Polymers, 14(1), 6. https://doi.org/10.3390/polym14010006