Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil
Abstract
:1. Introduction
2. Materials and Test Program
2.1. Materials
2.2. Mix Proportions and Sample Preparation
2.3. Sample Preparation
2.4. Test Methods
3. Results and Discussion
3.1. Effect of the Type and Content of Stabilizer on the UCS of Stabilized Soil
3.2. Effect of the Slag–Fly Ash Ratio on the UCS of Geopolymer Stabilized Soil
3.3. Effect of the Alkaline Activator Content on the UCS of Geopolymer Stabilized Soil
3.4. Microstructure Characteristics of Stabilized Soil
4. Conclusions and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, N.; Wang, C.; Wang, Z.; Li, B.; Liu, Y. Strength Characteristics and Microstructure of Cement Stabilized Soft Soil Admixed with Silica Fume. Materials 2021, 14, 1929. [Google Scholar] [CrossRef]
- Ahmed, A. Compressive Strength and Microstructure of Soft Clay Soil Stabilized with Recycled Bassanite. Appl. Clay Sci. 2015, 104, 27–35. [Google Scholar] [CrossRef]
- Chenarboni, H.A.; Lajevardi, S.H.; MolaAbasi, H.; Zeighami, E. The effect of Zeolite and Cement Stabilization on the Mechanical Behavior of Expansive Soils. Constr. Build. Mater. 2021, 272, 121630. [Google Scholar] [CrossRef]
- Kang, G.-O.; Tsuchida, T.; Kim, Y.-S. Strength and Stiffness of Cement-Treated Marine Dredged Clay at Various Curing Stages. Constr. Build. Mater. 2017, 132, 71–84. [Google Scholar] [CrossRef]
- Ghadir, P.; Zamanian, M.; Mahbubi-Motlagh, N.; Saberian, M.; Li, J.; Ranjbar, N. Shear Strength and Life Cycle Assessment of Volcanic Ash-Based Geopolymer and Cement Stabilized Soil: A Comparative Study. Transp. Geotech. 2021, 31, 100639. [Google Scholar] [CrossRef]
- Yu, H.; Yi, Y.; Romagnoli, A.; Tan, W. Cement Soil Stabilization for Underground Liquid Natural Gas Storage. Cold. Reg. Sci. Technol. 2022, 194, 103438. [Google Scholar] [CrossRef]
- Naths, K. Influence of Iron Making Slags on Strength and Microstructure of Fly Ash Geopolymer. Constr. Build. Mater. 2013, 38, 924–930. [Google Scholar] [CrossRef]
- Mohanty, S.; Roy, N.; Singh, S.P.; Sihag, P. Strength and Durability of Flyash, GGBS and Cement Clinker Stabilized Dispersive Soil. Cold. Reg. Sci. Technol. 2021, 191, 103358. [Google Scholar] [CrossRef]
- Rahmawati, C.; Aprilia, S.; Saidi, T.; Aulia, T.B.; Hadi, A.E. The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement. Polymers 2021, 13, 2178. [Google Scholar] [CrossRef]
- Wielgus, N.; Kubica, J.; Gorski, M. Influence of the Composition and Curing Time on Mechanical Properties of Fluidized Bed Combustion Fly Ash-Based Geopolymer. Polymers 2021, 13, 2527. [Google Scholar] [CrossRef]
- Basri, M.S.M.; Mustapha, F.; Mazlan, N.; Ishak, M.R. Rice-Husk-Ash-Based Geopolymer Coating: Fire-Retardant, Optimize Composition, Microstructural, Thermal and Element Characteristics Analysis. Polymers 2021, 13, 3747. [Google Scholar] [CrossRef]
- Yanou, R.N.; Kaze, R.C.; Adesina, A.; Nemaleu, J.G.D.; Jiofack, S.B.K.; Djobo, J.N.Y. Performance of Laterite-Based Geopolymers Reinforced with Sugarcane Bagasse Fibers. Case. Stud. Constr. Mat. 2021, 15, e00762. [Google Scholar] [CrossRef]
- Kaze, C.R.; Adesina, A.; Lecomte-Nana, G.L.; Metekong, J.V.S.; Samen, L.V.K.; Kamseu, E.; Melo, U.C. Synergetic Effect of Rice Husk Ash and Quartz Sand on Microstructural and Physical Properties of Laterite Clay Based Geopolymer. J. Build. Eng. 2021, 43, 103229. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Lu, M.; Chen, B.; Gao, S.; Bai, J.; Zhang, H.; Yang, Y. Study on the Effect of Calcium and Sulfur Content on the Properties of Fly Ash Based Geopolymer. Constr. Build. Mater. 2022, 314, 125650. [Google Scholar] [CrossRef]
- Am, H.; Rr, R.; Sa, A. Effect of Various Factors on the Manufacturing of Geopolymer Mortar. Arch. Sci. 2017, 1, 1–8. [Google Scholar]
- Ghosh, K.; Ghosh, P. Effect of Alkali Concentration on Mechanical Properties, Microstructure, Zeta Potential and Electrical Conductivity of Thermally Cured Fly-Ash-Blast Furnace Slag Based Blended Geopolymer Composites. Orient. J. Chem. 2018, 34, 704–715. [Google Scholar] [CrossRef] [Green Version]
- Behnood, A. Soil and Clay Stabilization with Calcium- and Non-Calcium-Based Additives: A State-of-the-Art Review of Challenges, Approaches and Techniques. Transp. Geotech. 2018, 17, 14–32. [Google Scholar] [CrossRef]
- Huang, J.; Kogbara, R.B.; Hariharan, N.; Masad, E.A.; Little, D.N. A State-of-the-Art Review of Polymers Used in Soil Stabilization. Constr. Build. Mater. 2021, 305, 124685. [Google Scholar] [CrossRef]
- Qian, L.; Xu, L.; Alrefaei, Y.; Wang, T.; Ishida, T.; Dai, J. Artificial Alkali-Activated Aggregates Developed from Wastes and by-Products: A State-of-the-Art Review. Resour. Conserv. Recy. 2022, 177, 105971. [Google Scholar] [CrossRef]
- Latifi, N.; Horpibulsuk, S.; Meehan, C.L.; Abd Majid, M.Z.; Tahir, M.M.; Mohamad, E.T. Improvement of Problematic Soils with Biopolymer-An Environmentally Friendly Soil Stabilizer. J. Mater. Civ. Eng. 2017, 29, 04016204. [Google Scholar] [CrossRef]
- Sukmak, P.; Horpibulsuk, S.; Shen, S.L. Strength Development in Clay-Fly Ash Geopolymer. Constr. Build. Mater. 2013, 40, 566–574. [Google Scholar] [CrossRef]
- Farooq, F.; Xin, J.; Javed, M.F.; Akbar, A.; Shah, M.I.; Aslam, F.; Alyousef, R. Geopolymer Concrete as Sustainable Material: A State of the Art Review. Constr. Build. Mater. 2021, 306, 124762. [Google Scholar] [CrossRef]
- Ren, B.; Zhao, Y.; Bai, H.; Kang, S.; Zhang, T.; Song, S. Eco-Friendly Geopolymer Prepared from Solid Wastes: A Critical Review. Chemosphere 2021, 267, 128900. [Google Scholar] [CrossRef]
- Tian, Q.; Sun, D.; Gua, Z.; Lv, Z. Influences of Characteristics of the Alkaline Activator on the Compressive Strength and Microstructure of the Fly Ash-Based Geopolymer Pastes. J. Ceram. Process. Res. 2020, 21, 358–364. [Google Scholar]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y. Alkali Activation of Australian Slag Cement. Cement Concrete. Res 1999, 29, 113–120. [Google Scholar] [CrossRef]
- Mozgawa, W.; Deja, J. Spectroscopic Studies of Alkaline Activated Slag Geopolymers. J. Mol. Struct. 2009, 924–926, 434–441. [Google Scholar] [CrossRef]
- Provis, J.L.; Yong, C.Z.; Duxson, P.; Deventer, J. Correlating Mechanical and Thermal Properties of Sodium Silicate-Fly Ash Geopolymers. Colloid. Surf. A 2009, 336, 57–63. [Google Scholar] [CrossRef]
- Sultan, M.E.; Abo-El-Enein, S.A.; Sayed, A.Z.; EL-Sokkary, T.M.; Hammad, H.A. Incorporation of Cement Bypass Flue Dust in Fly Ash and Blast Furnace Slag-Based Geopolymer. Case. Stud. Constr. Mat. 2018, 8, 315–322. [Google Scholar] [CrossRef]
- Zhang, P.; Gao, Z.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Properties of Fresh and Hardened Fly Ash/Slag Based Geopolymer Concrete: A Review. J. Clean. Prod. 2020, 270, 122389. [Google Scholar] [CrossRef]
- Luo, Z.; Li, W.; Wang, K.; Castel, A.; Shah, S.P. Comparison on the Properties of ITZs in Fly Ash-Based Geopolymer and Portland Cement Concretes with Equivalent Flowability. Cement Concrete Res. 2021, 143, 106392. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, J. Micromorphology and Microstructure of Coal Fly Ash and Furnace Bottom Slag Based Light-Weight Geopolymer. Constr. Build. Mater. 2020, 242, 118168. [Google Scholar] [CrossRef]
- Kantarcı, F.; Maraş, M.M. Formulation of a Novel Nano TiO2-Modified Geopolymer Grout for Application in Damaged Beam-Column Joints. Constr. Build. Mater. 2022, 317, 125929. [Google Scholar] [CrossRef]
- Gao, H.; Liao, L.; Liang, Y.; Tang, X.; Liu, H.; Mei, L.; Lv, G.; Wang, L. Improvement of Durability of Porous Perlite Geopolymer-Based Thermal Insulation Material Under Hot and Humid Environment. Constr. Build. Mater. 2021, 313, 125417. [Google Scholar] [CrossRef]
- Degefu, D.M.; Liao, Z.; Berardi, U.; Doan, H. Salient Parameters Affecting the Performance of Foamed Geopolymers as Sustainable Insulating Materials. Constr. Build. Mater. 2021, 313, 125400. [Google Scholar] [CrossRef]
- Almutairi, A.L.; Tayeh, B.A.; Adesina, A.; Isleem, H.F.; Zeyad, A.M. Potential Applications of Geopolymer Concrete in Construction: A Review. Case. Stud. Constr. Mat. 2021, 15, e00733. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Sriopas, B.; Phosri, P.; Yoddumrong, P.; Anantakarn, K.; Kroehong, W. Hybrid High Calcium Fly Ash Alkali-Activated Repair Material for Concrete Exposed to Sulfate Environment. J. Build. Eng. 2022, 45, 103590. [Google Scholar] [CrossRef]
- Abdullah, H.A.; Shahin, M.A.; Walske, M.L.; Karrech, A. Cyclic Behaviour of Clay Stabilised with Fly-Ash Based Geopolymer Incorporating Ground Granulated Slag. Transp. Geotech. 2021, 26, 100430. [Google Scholar] [CrossRef]
- Cristelo, N.; Glendinning, S.; Fernandes, L.; Pinto, A.T. Effects of Alkaline-Activated Fly Ash and Portland Cement on Soft Soil Stabilisation. Acta Geotech. 2013, 8, 395–405. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, M.; Zhang, G.; Nowak, P.; Coen, A.; Tao, M. Calcium-Free Geopolymer as a Stabilizer for Sulfate-Rich Soils. Appl. Clay Sci. 2015, 108, 199–207. [Google Scholar] [CrossRef]
- Phummiphan, I.; Horpibulsuk, S.; Sukmak, P.; Chinkulkijniwat, A.; Arulrajah, A.; Shen, S.-L. Stabilisation of Marginal Lateritic Soil Using High Calcium Fly Ash-Based Geopolymer. Road. Mater. Pavem. Des. 2016, 17, 877–891. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, C.; Liu, F.; Fan, F. Feasibility Study of Loess Stabilization with Fly Ash-Based Geopolymer. J. Mater. Civ. Eng. 2016, 28, 04016003. [Google Scholar] [CrossRef]
- Arulrajah, A.; Yaghoubi, M.; Disfani, M.M.; Horpibulsuk, S.; Bo, M.W.; Leong, M. Evaluation of Fly ash-and Slag-Based Geopolymers for the Improvement of a Soft Marine Clay by Deep Soil Mixing. Soils Found. 2018, 58, 1358–1370. [Google Scholar] [CrossRef]
- Du, Y.; Yu, B.; Liu, K.; Jiang, N.; Liu, M. Physical, Hydraulic, and Mechanical Properties of Clayey Soil Stabilized by Lightweight Alkali-Activated Slag Geopolymer. J. Mater. Civ. Eng. 2016, 29, 04016217. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Wu, D.; Zhang, Z.; Pan, C.; Shen, X.; Xia, L.; Zang, J. Modeling and Optimization of Fly Ash-Slag-Based Geopolymer Using Response Surface Method and Its Application in Soft Soil Stabilization. Constr. Build. Mater. 2021, 23, 125723. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Shahin, M.A.; Walske, M.L. Geo-Mechanical Behavior of Clay Soils Stabilized at Ambient Temperature with Fly-Ash Geopolymer-Incorporated Granulated Slag. Soils Found. 2019, 59, 1906–1920. [Google Scholar] [CrossRef]
- JGJ/T 233-2011. Specification for Mix Proportion Design of Cement Soil; China Construction Industry Press: Beijing, China, 2011. [Google Scholar]
- Jiang, N.; Du, Y.; Liu, S.; Wei, M.; Horpibulsuk, S.; Arulrajah, A. Multi-Scale Laboratory Evaluation of the Physical, Mechanical, and Microstructural Properties of Soft Highway Subgrade Soil Stabilized with Calcium Carbide Residue. Can. Geotech. J. 2016, 53, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Qiu, H.; He, H.; Chen, X.; Hao, G. Application of a Soft Soil Stabilized by Composite Geopolymer. J. Perform. Constr. Facil. 2021, 35, 04021018. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Flexural Strength and Elastic Modulus of Ambient-Cured Blended Low-Calcium Fly Ash Geopolymer Concrete. Constr. Build. Mater. 2017, 130, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Palomo, A.; Grutzeck, M.W.; Blancoa, M.T. Alkali-Activated Fly Ashes: A Cement for the Future. Cement Concrete Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A.; Criado, M. Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model. Cement Concrete Res. 2005, 35, 1204–1209. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, X.; Yang, A.; Li, Y. Experimental Study on the Compressive Strength of Muddy Clay Solidified by the One-Part Slag–Fly Ash Based Geopolymer. Rock Soil Mech. 2021, 42, 647–655. (In Chinese) [Google Scholar]
- Phoo-Ngernkham, T.; Maegawa, A.; Mishima, N.; Hatanaka, S.; Chindaprasirt, P. Effects of Sodium Hydroxide and Sodium Silicate Solutions on Compressive and Shear Bond Strengths of FA-GBFS Geopolymer. Constr. Build. Mater. 2015, 91, 1–8. [Google Scholar] [CrossRef]
- Yu, J.; Chen, Y.; Chen, G.; Tang, T.; Guo, Y. Mechanical Behaviour of Geopolymer Stabilized Clay and Its Mechanism. J. Build. Mater. 2020, 23, 364–371. (In Chinese) [Google Scholar]
Sampling Depth/m | Specific Gravity | Natural Moisture Content/% | Wet Density/g·cm−3 | Liquid Limit/% | Plasticity Index | Initial Void Ratio | Organic Matter Content/% |
---|---|---|---|---|---|---|---|
6.0 | 2.65 | 51.8 | 1.63 | 49.4 | 26.9 | 1.503 | 2.21 |
Raw Materials | MgO | Al2O3 | SiO2 | CaO | Fe2O3 | SO3 |
---|---|---|---|---|---|---|
Cement | 3.30 | 5.50 | 21.00 | 65.40 | 2.90 | 2.00 |
Slag | 6.01 | 17.70 | 34.50 | 34.00 | 1.03 | 1.64 |
Fly ash | 0.86 | 27.4 | 49.04 | 3.23 | 1.53 | 1.15 |
Slag:Fly Ash | Alkaline Activator | Water–Binder Ratio | Bleeding Rate/% | Setting Time/Min | Compressive Strength/MPa | |||
---|---|---|---|---|---|---|---|---|
Modulus | Content/% | Initial | Final | 7 d | 28 d | |||
90:10 | 1.2 | 40 | 0.5 | 0.52 | 153 | 245 | 49.4 | 65.2 |
Label | Cement Content/% | Geopolymer Content/% | Slag:Fly Ash | Alkaline Activator | Water–Binder Ratio | |
---|---|---|---|---|---|---|
Modulus | Content/% | |||||
C-1 | 12 | - | - | 1.2 | - | 0.5 |
C-2 | 15 | - | - | 1.2 | - | 0.5 |
C-3 | 18 | - | - | 1.2 | - | 0.5 |
I-1 | - | 12 | 90:10 | 1.2 | 40 | 0.5 |
I-2 | - | 12 | 80:20 | 1.2 | 40 | 0.5 |
I-3 | - | 12 | 80:20 | 1.2 | 30 | 0.5 |
I-4 | - | 12 | 80:20 | 1.2 | 20 | 0.5 |
I-5 | - | 12 | 70:30 | 1.2 | 20 | 0.5 |
II-1 | - | 15 | 90:10 | 1.2 | 40 | 0.5 |
II-2 | - | 15 | 80:20 | 1.2 | 40 | 0.5 |
II-3 | - | 15 | 80:20 | 1.2 | 30 | 0.5 |
II-4 | - | 15 | 80:20 | 1.2 | 20 | 0.5 |
II-5 | - | 15 | 70:30 | 1.2 | 20 | 0.5 |
III-1 | - | 18 | 90:10 | 1.2 | 40 | 0.5 |
III-2 | - | 18 | 80:20 | 1.2 | 40 | 0.5 |
III-3 | - | 18 | 80:20 | 1.2 | 30 | 0.5 |
III-4 | - | 18 | 80:20 | 1.2 | 20 | 0.5 |
III-5 | - | 18 | 70:30 | 1.2 | 20 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Luo, B.; Zhao, Y.; Li, X.; Su, Y.; Huang, H.; Wang, Q. Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil. Polymers 2022, 14, 307. https://doi.org/10.3390/polym14020307
Luo Z, Luo B, Zhao Y, Li X, Su Y, Huang H, Wang Q. Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil. Polymers. 2022; 14(2):307. https://doi.org/10.3390/polym14020307
Chicago/Turabian StyleLuo, Zhengdong, Biao Luo, Yufei Zhao, Xinyu Li, Yonghua Su, He Huang, and Qian Wang. 2022. "Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil" Polymers 14, no. 2: 307. https://doi.org/10.3390/polym14020307
APA StyleLuo, Z., Luo, B., Zhao, Y., Li, X., Su, Y., Huang, H., & Wang, Q. (2022). Experimental Investigation of Unconfined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil. Polymers, 14(2), 307. https://doi.org/10.3390/polym14020307