Studies on Intermolecular Interaction of N-Glycidyltrimethyl Ammonium Chloride Modified Chitosan/N,N-Dimethyl-N-dodecyl-N-(2,3-epoxy propyl) Ammonium Chloride and Curcumin Delivery
Abstract
:1. Introduction
2. Experimental
2.1. Reagents
2.2. Characterization of GTA-m-CS and DDEAC
2.3. Solution Froperties of GTA-m-CS/DDEAC
2.4. Curcumin Encapsulation and In Vitro Releasing
3. Results and Dissolution
3.1. Molecular Structures of GTA-m-CS and DDEAC
3.2. Surface Tension
3.3. Viscosity
3.4. Conductivity
3.5. Steady-State Fluorescence
3.6. Curcumin Encapsulation and Releasing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; An, C.; Wang, Y.; Zhang, B.; Tian, X.; Lee, K. A green initiative for oiled sand cleanup using chitosan/rhamnolipid complex dispersion with pH-stimulus response. Chemosphere 2022, 288, 132628. [Google Scholar] [CrossRef] [PubMed]
- Ajdnik, U.; Finšgar, M.; Fras Zemljič, L. Characterization of chitosan-lysine surfactant bioactive coating on silicone substrate. Carbohyd. Polym. 2020, 232, 115817. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef] [Green Version]
- Aranaz, I.; Acosta, N.; Civera, C.; Elorza, B.; Mingo, J.; Castro, C. Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers 2018, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Negm, N.A.; Hefni, H.H.H.; Abd-Elaal, A.A.A.; Badr, E.A.; Abou Kana, M.T.H. Advancement on modification of chitosan biopolymer and its potential applications. Int. J. Biol. Macromol. 2020, 152, 681–702. [Google Scholar] [CrossRef]
- Abd El-Monaem, E.M.; Eltaweil, A.S.; Elshishini, H.M.; Hosny, M.; Abou Alsoaud, M.M.; Attia, N.F. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. Arab. J. Chem. 2022, 15, 103743. [Google Scholar] [CrossRef]
- Chiappisi, L.; Gradzielski, M. Co-assembly in chitosan–surfactant mixtures: Thermodynamics, structures, interfacial properties and applications. Adv. Colloid Interface Sci. 2015, 220, 92–107. [Google Scholar] [CrossRef]
- Chatterjee, S.; Judeh, Z.M.A. Impact of the type of emulsifier on the physicochemical characteristics of the prepared fish oil-loaded microcapsules. J. Microencapsul. 2017, 34, 366–382. [Google Scholar] [CrossRef]
- Das, D.; Pal, A. Adsolubilization phenomenon perceived in chitosan beads leading to a fast and enhanced malachite green removal. Chem. Eng. J. 2016, 290, 371–380. [Google Scholar] [CrossRef]
- Bharmoria, P.; Singh, T.; Kumar, A. Complexation of chitosan with surfactant like ionic liquids: Molecular interactions and preparation of chitosan nanoparticles. J. Colloid Interface Sci. 2013, 407, 361–369. [Google Scholar] [CrossRef]
- Akanno, A.; Guzmán, E.; Ortega, F.; Rubio, R.G. Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: Effect of polymer–surfactant interactions. Phys. Chem. Chem. Phys. 2020, 22, 23360–23373. [Google Scholar] [CrossRef] [PubMed]
- Petrović, L.; Milinković, J.; Fraj, J.; Bučko, S.; Katona, J.; Spasojević, L. Study of interaction between chitosan and sodium lauryl ether sulfate. Colloid Polym. Sci. 2017, 295, 2279–2285. [Google Scholar] [CrossRef]
- Senra, T.D.A.; Khoukh, A.; Desbrières, J. Interactions between quaternized chitosan and surfactant studied by diffusion NMR and conductivity. Carbohyd. Polym. 2017, 156, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Piegat, A.; Niemczyk, A.; Goszczyńska, A. Emulsification Parameters Study on Micelles Formation from Hydrophobically Modified Chitosan. Prog. Chem. Appl. Chitin Its Deriv. 2021, 26, 178–190. [Google Scholar] [CrossRef]
- Elsaid, N.; Jackson, T.L.; Gunic, M.; Somavarapu, S. Positively Charged Amphiphilic Chitosan Derivative for the Transscleral Delivery of Rapamycin. Investig. Ophth. Visl. Sci. 2012, 53, 8105–8111. [Google Scholar] [CrossRef]
- Gençer, N.; Sinan, S.; Arslan, O. Kinetic Properties of Polyphenol Oxidase Obtained from Various Olives (Olea europa L.). Asian J. Chem. 2012, 24, 2159–2161. [Google Scholar] [CrossRef]
- Wang, C.-C.; Lin, L.-H.; Lee, H.-T.; Ye, Y.-W. Surface activity and micellization properties of chitosan-succinyl derivatives. Colloids Surf. A Physicochem. Eng. Asp. 2011, 389, 246–253. [Google Scholar] [CrossRef]
- Burr, S.J.; Williams, P.A.; Ratcliffe, I. Synthesis of cationic alkylated chitosans and an investigation of their rheological properties and interaction with anionic surfactant. Carbohyd. Polym. 2018, 201, 615–623. [Google Scholar] [CrossRef]
- Pérez-Gramatges, A.; Matheus, C.R.V.; Lopes, G.; da Silva, J.C.; Nascimento, R.S.V. Surface and interfacial tension study of interactions between water-soluble cationic and hydrophobically modified chitosans and nonylphenol ethoxylate. Colloids Surf. A Physicochem. Eng. Asp. 2013, 418, 124–130. [Google Scholar] [CrossRef]
- Choi, K.-O.; Choe, J.; Suh, S.; Ko, S. Positively Charged Nanostructured Lipid Carriers and Their Effect on the Dissolution of Poorly Soluble Drugs. Molecules 2016, 21, 672. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhang, C.; Qiao, C.; Mu, X.; Li, T.; Xu, J. A simple and convenient method to synthesize N-[(2-hydroxyl)-propyl-3-trimethylammonium] chitosan chloride in an ionic liquid. Carbohyd. Polym. 2015, 130, 325–332. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Yang, X.; Zhang, D.; Liu, C. Theoretical study of the reaction of chitosan monomer with 2,3-epoxypropyl-trimethyl quaternary ammonium chloride catalyzed by an imidazolium-based ionic liquid. Carbohyd. Polym. 2016, 146, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, Y.; Yang, X. Reaction kinetics of glycidyl trimethyl ammonium chloride and chitosan in 1-allyl-3-methylimidazolium chloride. J. Indian Chem. Soc. 2021, 98, 100129. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, X.; Wang, S.; Li, J.; Cui, Y.; Li, T. Interaction Between GMAC-m-CS and Surfactants: Surface Tension and Conductivity Methods. J. Disper. Sci. Technol. 2016, 37, 1502–1510. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Li, Y.; Chen, Y.; Zhou, X.; Li, T. Synthesis and characterization of the epoxy-functionalized quaternary ammonium chloride. Colloids Surf. A Physicochem. Eng. Asp. 2016, 498, 248–257. [Google Scholar] [CrossRef]
- Turro, N.J.; Yekta, A. Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J. Am. Chem. Soc. 1978, 100, 5951–5952. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Yang, X.; Xing, S.; Qiao, C.; Wang, S. O-Carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application. Carbohyd. Polym. 2020, 237, 116112. [Google Scholar] [CrossRef]
- Sajomsang, W. Synthetic methods and applications of chitosan containing pyridylmethyl moiety and its quaternized derivatives: A review. Carbohyd. Polym. 2010, 80, 631–647. [Google Scholar] [CrossRef]
- Sun, X.; Tian, Q.; Xue, Z.; Zhang, Y.; Mu, T. The dissolution behaviour of chitosan in acetate-based ionic liquids and their interactions: From experimental evidence to density functional theory analysis. RSC Adv. 2014, 4, 30282–30291. [Google Scholar] [CrossRef]
- Burlatsky, S.F.; Atrazhev, V.V.; Dmitriev, D.V.; Sultanov, V.I.; Timokhina, E.N.; Ugolkova, E.A. Surface tension model for surfactant solutions at the critical micelle concentration. J. Colloid Interface Sci. 2013, 393, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Xu, G.; Sun, Y.; Zhang, H.; Mao, H.; Feng, Y. Interaction between Proteins and Cationic Gemini Surfactant. Biomacromolecules 2007, 8, 708–712. [Google Scholar] [CrossRef] [PubMed]
- Xin, X.; Xu, G.; Zhang, Z.; Chen, Y.; Wang, F. Aggregation behavior of star-like PEO–PPO–PEO block copolymer in aqueous solution. Eur. Polym. J. 2007, 43, 3106–3111. [Google Scholar] [CrossRef]
- Yan, M.; Li, B.; Zhao, X. Determination of critical aggregation concentration and aggregation number of acid-soluble collagen from walleye pollock (Theragra chalcogramma) skin using the fluorescence probe pyrene. Food Chem. 2010, 122, 1333–1337. [Google Scholar] [CrossRef]
- Zhao, S.; Cheng, F.; Chen, Y.; Wei, Y. The interactions between cationic cellulose and Gemini surfactant in aqueous solution. Carbohyd. Polym. 2016, 141, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Kroes-Nijboer, A.; Venema, P.; Bouman, J.; van der Linden, E. The Critical Aggregation Concentration of β-Lactoglobulin-Based Fibril Formation. Food Biophys. 2009, 4, 59–63. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-M.; Lai, Y.-W.; Kuo, S.-W.; Hong, J.-L. Complexation of Fluorescent Tetraphenylthiophene-Derived Ammonium Chloride to Poly(N-isopropylacrylamide) with Sulfonate Terminal: Aggregation-Induced Emission, Critical Micelle Concentration, and Lower Critical Solution Temperature. Langmuir 2012, 28, 15725–15735. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Meng, H.; Li, T.; Qiao, C.; Xu, G. Viscometric Properties of Carboxymethylchitosan Solutions. J. Macromol. Sci. B 2014, 53, 1128–1136. [Google Scholar] [CrossRef]
- Vanyúr, R.; Biczók, L.; Miskolczy, Z. Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2007, 299, 256–261. [Google Scholar] [CrossRef]
- Ao, M.; Huang, P.; Xu, G.; Yang, X.; Wang, Y. Aggregation and thermodynamic properties of ionic liquid-type gemini imidazolium surfactants with different spacer length. Colloid Polym. Sci. 2009, 287, 395–402. [Google Scholar] [CrossRef]
- Dubey, N. CTAB aggregation in solutions of higher alcohols: Thermodynamic and spectroscopic studies. J. Mol. Liq. 2013, 184, 60–67. [Google Scholar] [CrossRef]
- Sahai, M.; Singh, R.K.; Kukrety, A.; Kumar, A.; Ray, S.S.; Chhibber, V.K. Application of Triazine-Based Gemini Surfactants as Viscosity Reducing Agents of Tar Sand Derived Bituminous Crude. Energy Fuels 2018, 32, 3031–3038. [Google Scholar] [CrossRef]
- Paul, S.; Paul, S. Molecular dynamics simulation study on the inhibitory effects of choline-O-sulfate on hIAPP protofibrilation. J. Comput. Chem. 2019, 40, 1957–1968. [Google Scholar] [CrossRef] [PubMed]
- Sivertsen, A.; Isaksson, J.; Leiros, H.-K.S.; Svenson, J.; Svendsen, J.-S.; Brandsdal, B.O. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol. 2014, 14, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obeid, M.A.; Khadra, I.; Albaloushi, A.; Mullin, M.; Alyamani, H.; Ferro, V.A. Microfluidic manufacturing of different niosomes nanoparticles for curcumin encapsulation:Physical characteristics, encapsulation efficacy, and drug release. J. Nanotechnol. 2019, 10, 1826–1832. [Google Scholar] [CrossRef] [Green Version]
- Sahu, A.; Kasoju, N.; Goswami, P.; Bora, U. Encapsulation of Curcumin in Pluronic Block Copolymer Micelles for Drug Delivery Applications. J. Biomater. Appl. 2011, 25, 619–639. [Google Scholar] [CrossRef]
- Jiang, T.; Liao, W.; Charcosset, C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res. Int. 2020, 132, 109035. [Google Scholar] [CrossRef]
cGTA-m-CS (mg/L) | cmc (mmol/L) | γcmc (mN/m) | pc20 (mmol/L) | πcmc (mN/m) |
---|---|---|---|---|
0 | 1.13 | 27.26 | 0.20 | 45.02 |
400 | 1.32 | 26.87 | 0.012 | 45.41 |
800 | 1.41 | 29.42 | 0.078 | 42.86 |
1200 | 1.51 | 27.78 | 0.056 | 44.50 |
1600 | 1.58 | 28.77 | 0.020 | 43.51 |
2000 | 1.64 | 30.64 | 0.047 | 41.64 |
t (°C) | cmc (mmol/L) | γcmc (mN/m) |
---|---|---|
20 | 1.51 | 27.78 |
30 | 1.39 | 27.70 |
40 | 1.16 | 26.14 |
50 | 0.96 | 25.61 |
60 | 0.83 | 24.63 |
cGTA-m-CS (mg/L) | T (°C) | cmc (mmol/L) | β | |||
---|---|---|---|---|---|---|
400 | 20 | 2.67 | 0.62 | −40.94 | 4.63 | 45.57 |
30 | 2.52 | - | −42.59 | 4.03 | 46.62 | |
40 | 2.43 | - | −44.15 | 5.58 | 49.73 | |
50 | 2.23 | - | −45.95 | 5.95 | 51.90 | |
60 | 2.15 | - | −47.54 | 3.77 | 51.32 | |
800 | 20 | 2.36 | 0.61 | −41.45 | 3.46 | 44.92 |
30 | 2.26 | - | −43.05 | 10.41 | 53.46 | |
40 | 1.85 | - | −45.35 | 14.92 | 60.27 | |
50 | 1.63 | - | −47.37 | 7.06 | 54.43 | |
60 | 1.60 | - | −48.93 | 1.92 | 50.85 | |
1200 | 20 | 1.89 | 0.69 | −42.37 | 12.34 | 54.71 |
30 | 1.62 | - | −44.47 | 13.45 | 57.92 | |
40 | 1.38 | - | −46.64 | 11.48 | 58.12 | |
50 | 1.26 | - | −48.54 | 8.44 | 56.98 | |
60 | 1.16 | - | −50.43 | 8.55 | 58.98 | |
1600 | 20 | 1.47 | 0.61 | −43.40 | 4.48 | 47.88 |
30 | 1.39 | - | −45.12 | 7.98 | 53.10 | |
40 | 1.22 | - | −47.18 | 6.71 | 53.89 | |
50 | 1.20 | - | −48.76 | 3.30 | 52.06 | |
60 | 1.14 | - | −50.51 | 5.30 | 55.82 | |
2000 | 20 | 1.28 | 0.61 | −43.97 | 15.85 | 59.82 |
30 | 1.05 | - | −46.32 | 11.87 | 58.18 | |
40 | 0.97 | - | −48.19 | 4.57 | 52.76 | |
50 | 0.95 | - | −49.83 | 2.05 | 51.88 | |
60 | 0.93 | - | −51.47 | 2.20 | 53.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, Y.; Xing, S.; Yang, X.; Zhao, J.; Dong, Q. Studies on Intermolecular Interaction of N-Glycidyltrimethyl Ammonium Chloride Modified Chitosan/N,N-Dimethyl-N-dodecyl-N-(2,3-epoxy propyl) Ammonium Chloride and Curcumin Delivery. Polymers 2022, 14, 1936. https://doi.org/10.3390/polym14101936
Zhang C, Li Y, Xing S, Yang X, Zhao J, Dong Q. Studies on Intermolecular Interaction of N-Glycidyltrimethyl Ammonium Chloride Modified Chitosan/N,N-Dimethyl-N-dodecyl-N-(2,3-epoxy propyl) Ammonium Chloride and Curcumin Delivery. Polymers. 2022; 14(10):1936. https://doi.org/10.3390/polym14101936
Chicago/Turabian StyleZhang, Cangheng, Yan Li, Shu Xing, Xiaodeng Yang, Jinrong Zhao, and Qiaoyan Dong. 2022. "Studies on Intermolecular Interaction of N-Glycidyltrimethyl Ammonium Chloride Modified Chitosan/N,N-Dimethyl-N-dodecyl-N-(2,3-epoxy propyl) Ammonium Chloride and Curcumin Delivery" Polymers 14, no. 10: 1936. https://doi.org/10.3390/polym14101936
APA StyleZhang, C., Li, Y., Xing, S., Yang, X., Zhao, J., & Dong, Q. (2022). Studies on Intermolecular Interaction of N-Glycidyltrimethyl Ammonium Chloride Modified Chitosan/N,N-Dimethyl-N-dodecyl-N-(2,3-epoxy propyl) Ammonium Chloride and Curcumin Delivery. Polymers, 14(10), 1936. https://doi.org/10.3390/polym14101936