Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Whey Protein Solution Preparation and Ultrasound Pretreatment
2.3. Intrinsic Fluorescence Spectrum
2.4. Sulfhydryl (SH) Content
2.5. Emulsion Preparation
2.6. Droplet Size and Zeta Potential Measurement
2.7. Rheological Properties
2.8. Emulsion Gel Formation
2.9. Texture Profile Analysis (TPA)
2.10. Water Holding Capacity (WHC)
2.11. Confocal Laser Scanning Microscope (CSLM)
2.12. Simulated Digestion
2.13. Determination of Free Amino Group
2.14. Statistical Analysis
3. Results and Discussion
3.1. Effect of Ultrasound Pretreatment on Structural Properties of Protein
3.2. Average Droplet Size of Emulsions Prepared with Ultrasound Modified Whey Protein
3.3. Zeta-Potential of Emulsions Prepared with Ultrasound Modified Whey Protein
3.4. Viscosity of Emulsions Prepared with Ultrasound Modified Whey Protein
3.5. Effect of Ultrasound Modified Whey Protein on Rheological Properties of WPEG
3.6. Effect of Ultrasound Modified Whey Protein on Textural Properties of WPEG
3.7. Effect of Ultrasound Modifyed Whey Protein on WHC of WPEG
3.8. Effect of Ultrasound Modifying Whey Protein on Microstructure of WPEG
3.9. Simulated Gastric Digestion and Free Amino Group Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dupont, D.; Le Feunteun, S.; Marze, S.; Souchon, I. Structuring food to control its disintegration in the gastrointestinal tract and optimize nutrient bioavailability. Innov. Food Sci. Emerg. Technol. 2018, 46, 83–90. [Google Scholar] [CrossRef]
- Free-Manjarrez, S.; Mojica, L.; Espinosa-Andrews, H.; Morales-Hernández, N. Sensory and Biological Potential of Encapsulated Common Bean Protein Hydrolysates Incorporated in a Greek-Style Yogurt Matrix. Polymers 2022, 14, 854. [Google Scholar] [CrossRef]
- Lin, D.; Kelly, A.L.; Miao, S. Preparation, structure-property relationships and applications of different emulsion gels: Bulk emulsion gels, emulsion gel particles, and fluid emulsion gels. Trends Food Sci. Technol. 2020, 102, 123–137. [Google Scholar] [CrossRef]
- Cheng, Y.; Ofori Donkor, P.; Yeboah, G.B.; Ayim, I.; Wu, J.; Ma, H. Modulating the in vitro digestion of heat-set whey protein emulsion gels via gelling properties modification with sequential ultrasound pretreatment. LWT 2021, 149, 111856. [Google Scholar] [CrossRef]
- Guo, Q.; Bellissimo, N.; Rousseau, D. Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels. Food Hydrocoll. 2017, 69, 264–272. [Google Scholar] [CrossRef]
- Mao, L.; Miao, S. Structuring food emulsions to improve nutrient delivery during digestion. Food Eng. Rev. 2015, 7, 439–451. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, Y.; Yuan, F.; Gao, Y.; Mao, L. Emulsion gels with different proteins at the interface: Structures and delivery functionality. Food Hydrocoll. 2021, 116, 106637. [Google Scholar] [CrossRef]
- Mao, C.; Wu, J.; Cheng, Y.; Chen, T.; Ren, X.; Ma, H. Physicochemical properties and digestive kinetics of whey protein gels filled with potato and whey protein mixture emulsified oil droplets: Effect of protein ratios. Food Funct. 2021, 12, 5927–5939. [Google Scholar] [CrossRef]
- Luo, N.; Ye, A.; Wolber, F.M.; Singh, H. Structure of whey protein emulsion gels containing capsaicinoids: Impact on in-mouth breakdown behaviour and sensory perception. Food Hydrocoll. 2019, 92, 19–29. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lamsal, B.P. Ultrasound-assisted extraction and modification of plant-based proteins: Impact on physicochemical, functional, and nutritional properties. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1457–1480. [Google Scholar] [CrossRef]
- Soltani Firouz, M.; Farahmandi, A.; Hosseinpour, S. Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrason. Sonochem. 2019, 57, 73–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Gong, Y.; Li, Z.; Guo, Y.; Yu, D.; Pan, M. Emulsion gels stabilized by soybean protein isolate and pectin: Effects of high intensity ultrasound on the gel properties, stability and β-carotene digestive characteristics. Ultrason. Sonochem. 2021, 79, 105756. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xiong, Y.L. Ultrasound-induced structural modification and thermal properties of oat protein. LWT 2021, 149, 111861. [Google Scholar] [CrossRef]
- Ma, T.; Xiong, Y.L.; Jiang, J. Calcium-aided fabrication of pea protein hydrogels with filler emulsion particles coated by pH12-shifting and ultrasound treated protein. Food Hydrocoll. 2022, 125, 107396. [Google Scholar] [CrossRef]
- Cheng, Y.; Donkor, P.O.; Ren, X.; Wu, J.; Agyemang, K.; Ayim, I.; Ma, H. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels. Food Hydrocoll. 2019, 89, 434–442. [Google Scholar] [CrossRef]
- Kiat Chu, J.; Joyce Tiong, T.; Chong, S.; Aisah Asli, U.; Hong Yap, Y. Multi-frequency sonoreactor characterisation in the frequency domain using a semi-empirical bubbly liquid model. Ultrason. Sonochem. 2021, 80, 105818. [Google Scholar] [CrossRef]
- Hegedűs, F.; Klapcsik, K.; Lauterborn, W.; Parlitz, U.; Mettin, R. GPU accelerated study of a dual-frequency driven single bubble in a 6-dimensional parameter space: The active cavitation threshold. Ultrason. Sonochem. 2020, 67, 105067. [Google Scholar] [CrossRef]
- Chen, W.; Ma, H.; Wang, Y.-Y. Recent advances in modified food proteins by high intensity ultrasound for enhancing functionality: Potential mechanisms, combination with other methods, equipment innovations and future directions. Ultrason. Sonochem. 2022, 85, 105993. [Google Scholar] [CrossRef]
- Umego, E.C.; He, R.; Ren, W.; Xu, H.; Ma, H. Ultrasonic-assisted enzymolysis: Principle and applications. Process. Biochem. 2021, 100, 59–68. [Google Scholar] [CrossRef]
- Li, H.; Hu, Y.; Zhao, X.; Wan, W.; Du, X.; Kong, B.; Xia, X. Effects of different ultrasound powers on the structure and stability of protein from sea cucumber gonad. LWT 2021, 137, 110403. [Google Scholar] [CrossRef]
- Wu, D.; Wu, C.; Ma, W.; Wang, Z.; Yu, C.; Du, M. Effects of ultrasound treatment on the physicochemical and emulsifying properties of proteins from scallops (Chlamys farreri). Food Hydrocoll. 2019, 89, 707–714. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, Q.; Xia, X.; Kong, B.; Diao, X. Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins. Ultrason. Sonochem. 2019, 54, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Ma, L.; Li, T.; Sun, D.; Hou, J.; Li, A.; Jiang, Z. Impact of ultrasonic power on the structure and emulsifying properties of whey protein isolate under various pH conditions. Process. Biochem. 2019, 81, 113–122. [Google Scholar] [CrossRef]
- Gregersen, S.B.; Wiking, L.; Hammershøj, M. Acceleration of acid gel formation by high intensity ultrasound is linked to whey protein denaturation and formation of functional milk fat globule-protein complexes. J. Food Eng. 2019, 254, 17–24. [Google Scholar] [CrossRef]
- Shen, X.; Fang, T.; Gao, F.; Guo, M. Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre- and post-thermal aggregation. Food Hydrocoll. 2017, 63, 668–676. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food–An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhao, J.; Zhang, W.; Liu, C.; Jauregi, P.; Huang, M. Modification of heat-induced whey protein gels by basic amino acids. Food Hydrocoll. 2020, 100, 105397. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, Y.; Tian, X.; Liu, J.; Ye, H.; Shen, X. Effect of ultrasound pretreatment on structural, physicochemical, rheological and gelation properties of transglutaminase cross-linked whey protein soluble aggregates. Ultrason. Sonochem. 2021, 74, 105553. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, T.; Liu, C.; Guo, F.; Zhao, J. l-Histidine improves solubility and emulsifying properties of soy proteins under various ionic strengths. LWT 2021, 152, 112382. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, Y.L. Physicochemical and Microstructural Characterization of Whey Protein Films Formed with Oxidized Ferulic/Tannic Acids. Foods 2021, 10, 1599. [Google Scholar] [CrossRef]
- Ren, X.; Hou, T.; Liang, Q.; Zhang, X.; Hu, D.; Xu, B.; Chen, X.; Chalamaiah, M.; Ma, H. Effects of frequency ultrasound on the properties of zein-chitosan complex coacervation for resveratrol encapsulation. Food Chem. 2019, 279, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.; Ahmed, E.; Ismaiel, A.; Ashokkumar, M.; Xu, X.; Pan, S.; Hu, H. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci. Technol. 2020, 105, 363–377. [Google Scholar] [CrossRef]
- Farjami, T.; Madadlou, A. An overview on preparation of emulsion-filled gels and emulsion particulate gels. Trends Food Sci. Technol. 2019, 86, 85–94. [Google Scholar] [CrossRef]
- Dickinson, E. Emulsion gels: The structuring of soft solids with protein-stabilized oil droplets. Food Hydrocoll. 2012, 28, 224–241. [Google Scholar] [CrossRef]
- Ma, W.; Wang, J.; Xu, X.; Qin, L.; Wu, C.; Du, M. Ultrasound treatment improved the physicochemical characteristics of cod protein and enhanced the stability of oil-in-water emulsion. Food Res. Int. 2019, 121, 247–256. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Silva, E.K.; Alvarenga, V.O.; Costa, A.L.R.; Cunha, R.L.; Sant’Ana, A.S.; Freitas, M.Q.; Meireles, M.A.A.; Cruz, A.G. Physicochemical changes and microbial inactivation after high-intensity ultrasound processing of prebiotic whey beverage applying different ultrasonic power levels. Ultrason. Sonochem. 2018, 44, 251–260. [Google Scholar] [CrossRef]
- Zheng, T.; Li, X.; Taha, A.; Wei, Y.; Hu, T.; Fatamorgana, P.B.; Zhang, Z.; Liu, F.; Xu, X.; Pan, S.; et al. Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods. Food Hydrocoll. 2019, 97, 105216. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Razavi, S.M.A.; Varidi, M. Sequential ultrasound and transglutaminase treatments improve functional, rheological, and textural properties of whey protein concentrate. Innov. Food Sci. Emerg. Technol. 2017, 43, 207–215. [Google Scholar] [CrossRef]
- Siró, I.; Vén, C.; Balla, C.; Jónás, G.; Zeke, I.; Friedrich, L. Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. J. Food Eng. 2009, 91, 353–362. [Google Scholar] [CrossRef]
- Khatkar, A.B.; Kaur, A.; Khatkar, S.K.; Mehta, N. Characterization of heat-stable whey protein: Impact of ultrasound on rheological, thermal, structural and morphological properties. Ultrason. Sonochem. 2018, 49, 333–342. [Google Scholar] [CrossRef]
- Bi, C.-h.; Chi, S.-y.; Wang, X.-y.; Alkhatib, A.; Huang, Z.-g.; Liu, Y. Effect of flax gum on the functional properties of soy protein isolate emulsion gel. LWT 2021, 149, 111846. [Google Scholar] [CrossRef]
- Yang, X.; Feng, J.; Zhu, Q.; Hong, R.; Li, L. A Relation between Exopolysaccharide from Lactic Acid Bacteria and Properties of Fermentation Induced Soybean Protein Gels. Polymers 2022, 14, 90. [Google Scholar] [CrossRef] [PubMed]
- Kornet, R.; Sridharan, S.; Venema, P.; Sagis, L.M.C.; Nikiforidis, C.V.; van der Goot, A.J.; Meinders, M.B.J.; van der Linden, E. Fractionation methods affect the gelling properties of pea proteins in emulsion-filled gels. Food Hydrocoll. 2022, 125, 107427. [Google Scholar] [CrossRef]
- Lan, Q.; Li, L.; Dong, H.; Wu, D.; Chen, H.; Lin, D.; Qin, W.; Yang, W.; Vasanthan, T.; Zhang, Q. Effect of Soybean Soluble Polysaccharide on the Formation of Glucono-δ-Lactone-Induced Soybean Protein Isolate Gel. Polymers 2019, 11, 1997. [Google Scholar] [CrossRef] [Green Version]
- Sousa, R.; Portmann, R.; Dubois, S.; Recio, I.; Egger, L. Protein digestion of different protein sources using the INFOGEST static digestion model. Food Res. Int. 2020, 130, 108996. [Google Scholar] [CrossRef]
- Deng, R.; Mars, M.; Van Der Sman, R.G.M.; Smeets, P.A.M.; Janssen, A.E.M. The importance of swelling for in vitro gastric digestion of whey protein gels. Food Chem. 2020, 330, 127182. [Google Scholar] [CrossRef]
- Nyemb, K.; Guérin-Dubiard, C.; Pézennec, S.; Jardin, J.; Briard-Bion, V.; Cauty, C.; Rutherfurd, S.M.; Dupont, D.; Nau, F. The structural properties of egg white gels impact the extent of in vitro protein digestion and the nature of peptides generated. Food Hydrocoll. 2016, 54, 315–327. [Google Scholar] [CrossRef]
- Guo, Q.; Ye, A.; Lad, M.; Dalgleish, D.; Singh, H. Impact of colloidal structure of gastric digesta on in-vitro intestinal digestion of whey protein emulsion gels. Food Hydrocoll. 2016, 54, 255–265. [Google Scholar] [CrossRef]
Power Level (W) | Frequency (kHz) | SH (µmol/g Protein) | Intrinsic Fluorescence | ||
---|---|---|---|---|---|
Free | Total | λmax (nm) | Intensity | ||
0 | 0 | 5.74 ± 1.08 a | 20.34 ± 1.85 A | 338.9 ± 3.5 a | 244.6 ± 2.2 A |
60 | 20 | 7.40 ± 1.78 a | 21.96 ± 2.73 A | 343.1 ± 1.4 a | 244.6 ± 3.7 A |
20/35 | 7.46 ± 2.23 a | 19.76 ± 1.84 A | 342.2 ± 1.4 a | 248.8 ± 4.2 A | |
20/35/50 | 7.68 ± 1.17 a | 17.64 ± 3.46 A | 340.4 ± 0.3 a | 249.9 ± 4.2 A | |
120 | 20 | 6.67 ± 2.55 a | 20.29 ± 2.08 A | 341.4 ± 3.2 a | 251.4 ± 1.9 A |
20/35 | 7.36 ± 2.15 a | 20.31 ± 2.97 A | 340.8 ± 3.0 a | 239.5 ± 2.0 A | |
20/35/50 | 8.34 ± 0.98 a | 21.02 ± 2.57 A | 344.3 ± 2.1 a | 256.4 ± 4.3 A | |
180 | 20 | 6.39 ± 2.16 a | 21.75 ± 2.99 A | 341.3 ± 1.4 a | 251.8 ± 3.9 A |
20/35 | 6.80 ± 2.04 a | 20.66 ± 3.25 A | 342.2 ± 2.8 a | 246.2 ± 3.2 A | |
20/35/50 | 7.18 ± 2.03 a | 20.96 ± 2.02 A | 341.1 ± 3.1 a | 266.8 ± 2.9 A | |
240 | 20 | 7.23 ± 1.85 a | 22.21 ± 2.75 A | 342.1 ± 0.3 a | 248.7 ± 5.4 A |
20/35 | 6.26 ± 1.42 a | 18.46 ± 2.01 A | 340.4± 2.0 a | 247.1 ± 3.8 A | |
20/35/50 | 7.28 ± 0.34 a | 17.60 ± 2.76 A | 341.5 ± 2.0 a | 251.1 ± 2.1 A | |
300 | 20 | 7.70 ± 1.70 a | 20.29 ± 2.37 A | 341.9 ± 1.5 a | 248.8 ± 5.3 A |
20/35 | 7.54 ± 2.25 a | 20.52 ± 1.72 A | 341.6 ± 2.3 a | 246.2 ± 0.7 A | |
20/35/50 | 8.17 ± 1.39 a | 22.83 ± 3.55 A | 341.0 ± 1.8 a | 256.8 ± 4.0 A |
Power Level (W) | Frequency (kHz) | Droplet Size (nm) | Zeta Potential (mV) |
---|---|---|---|
0 | 0 | 382.2 ± 68.9 a | 26.0 ± 1.6 abc |
60 | 20 | 472.7 ± 80.2 a | 27.0 ± 2.0 abc |
20/35 | 426.3 ± 72.6 a | 25.7 ± 1.6 abc | |
20/35/50 | 436.1 ± 169.1 a | 27.6 ± 1.0 abc | |
120 | 20 | 372.7 ± 50.4 a | 27.9 ± 1.2 abc |
20/35 | 480.4 ± 87.8 a | 26.9 ± 1.4 abc | |
20/35/50 | 397.3 ± 3.2 a | 27.1 ± 2.0 abc | |
180 | 20 | 383.4 ± 59.6 a | 25.7 ± 2.8 abc |
20/35 | 470.5 ± 26.0 a | 25.8 ± 0.8 abc | |
20/35/50 | 390.0 ± 36.7 a | 28.9 ± 0.6 bc | |
240 | 20 | 404.1 ± 38.7 a | 26.0 ± 2.2 abc |
20/35 | 532.6 ± 136.6 a | 25.9 ± 1.2 abc | |
20/35/50 | 419.6 ± 81.1 a | 27.8 ± 1.0 abc | |
300 | 20 | 415.5 ± 84.2 a | 24.8± 1.6 ab |
20/35 | 402.2 ± 48.7 a | 23.8 ± 2.0 a | |
20/35/50 | 332.8 ± 22.5 a | 29.0 ± 2.2 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Yeboah, G.B.; Guo, X.; Donkor, P.O.; Wu, J. Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode. Polymers 2022, 14, 2054. https://doi.org/10.3390/polym14102054
Cheng Y, Yeboah GB, Guo X, Donkor PO, Wu J. Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode. Polymers. 2022; 14(10):2054. https://doi.org/10.3390/polym14102054
Chicago/Turabian StyleCheng, Yu, Georgina Benewaa Yeboah, Xinyi Guo, Prince Ofori Donkor, and Juan Wu. 2022. "Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode" Polymers 14, no. 10: 2054. https://doi.org/10.3390/polym14102054
APA StyleCheng, Y., Yeboah, G. B., Guo, X., Donkor, P. O., & Wu, J. (2022). Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode. Polymers, 14(10), 2054. https://doi.org/10.3390/polym14102054