Kinetic, Isotherm, and Equilibrium Investigation of Cr(VI) Ion Adsorption on Amine-Functionalized Porous Silica Beads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Functionalization of Silica Beads
2.3. Determination of Amount of Amino Groups
2.4. XPS Measurements
2.5. Cr(VI) Ion Adsorption
2.6. Cr(VI) Ion Desorption
3. Result and Discussions
3.1. Functionalization with AEAPTES
3.2. XPS Analysis
3.3. Cr(VI) Ion Adsorption
3.3.1. pH and Temperature Dependence
3.3.2. Amount of Amino Groups
3.3.3. Kinetic Analysis
3.3.4. Intraparticle Diffusion Model
3.3.5. Isotherm Analysis
3.4. Desorption
3.5. Functionalization with Polyfunctional Amine Compounds and PEIs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saha, R.; Nandi, R.; Saha, B. Sources and toxicity of hexavalent chromium. J. Coord. Chem. 2011, 64, 1782–1806. [Google Scholar] [CrossRef]
- Pakade, V.E.; Tavengwa, N.T.; Madikizela, L.M. Recent advances in hexavalent chromium removal from aqueous solutions by adsorptive methods. RSC Adv. 2019, 9, 26142–26164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asamoto, H.; Kimura, Y.; Ishiguro, Y.; Minamisawa, M.; Yamada, K. Use of polyethylene films photografted with 2-(dimethylamino)ethyl methacrylate as a potential adsorbent for removal of chromium (VI) from aqueous medium. J. Appl. Polym. Sci. 2016, 133, 43360. [Google Scholar] [CrossRef]
- Yamada, K.; Kitao, Y.; Asamoto, H.; Minamisawa, H. Development of recoverable adsorbents for Cr(VI) ions by grafting of a dimethylamino group-containing monomer on polyethylene substrate and subsequent quaternization. Environ. Technol. 2022. published online. [Google Scholar] [CrossRef] [PubMed]
- Karimi-Maleh, H.; Ayati, A.; Ghanbari, S.; Orooji, Y.; Tanhaei, B.; Karimi, F.; Alizadeh, M.; Rouhi, J.; Fu, L.; Sillanpää, M. Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J. Mol. Liq. 2021, 329, 115062. [Google Scholar] [CrossRef]
- Bhattacharya, A.K.; Naiya, T.K.; Mandal, S.N.; Das, S.K. Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem. Eng. J. 2008, 137, 529–541. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Qi, T.; Zhou, Y.; Liu, C.; Chu, J.; Zhang, Y. Different N-containing functional groups modified mesoporous adsorbents for Cr(VI) sequestration synthesis, characterization and comparison. Micropor. Mesopor. Mater. 2008, 110, 442–450. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Deryło-Marczewska, A.; Słota, A. Adsorption and desorption kinetics of benzene derivatives on mesoporous carbons. Adsorption 2013, 19, 391–406. [Google Scholar] [CrossRef] [Green Version]
- Anstiferova, Y.; Sotnikova, N.; Parfenyyuk, E. Different effects of the immunomodulatory drug GMDP immobilized onto aminopropyl modified and unmodified mesoporous silica nanoparticles upon peritoneal macrophages of women with endometriosis. BioMed. Res. Int. 2013, 2013, 924362. [Google Scholar] [CrossRef]
- Kim, J.; Kang, J.; Lee, S.; Kim, S. Synthesis of powdered and granular N-(3-trimethoxysilylpropyl)diethylenetriamine-grafted mesoporous silica SBA-15 for Cr(VI) removal from industrial wastewater. J. Taiwan Inst. Chem. Eng. 2018, 87, 140–149. [Google Scholar] [CrossRef]
- Mumtaz, K.; Iqbal, S.; Shahida, S.; Shafique, M.A.; Wasim, M.; Ahmad, B. Synthesis and performance evaluation of diphenylcarbazide functionalized mesoporous silica for selective removal of Cr(VI). Microporous Mesoporous Mater. 2021, 326, 111361. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, X.; Li, S.; Ma, W.; Li, Y.; He, Z.; Hu, H. Effective removal of Cr(VI). from aqueous solution based on APTES modified nanoporous silicon prepared from kerf loss silicon waste. Envion. Sci. Pollut. Res. 2020, 27, 10899–10909. [Google Scholar] [CrossRef]
- Cras, J.J.; Rowe-Taitt, C.A.; Nivens, D.A.; Ligler, F.S. Comparison of chemical cleaning methods of glass in preparation for silanization. Biosens. Bioelectron. 1999, 14, 683–688. [Google Scholar] [CrossRef]
- Aziz, B.; Zhao, G.; Hedin, N. Carbon dioxide sorbents with propylamine groups-Silica functionalized with a fractional factorial design approach. Langmuir 2011, 27, 3822–3834. [Google Scholar] [CrossRef] [PubMed]
- Howarter, J.A.; Youngblood, J.P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir 2006, 22, 11142–11147. [Google Scholar] [CrossRef]
- Zengin, H.; Hu, B.; Siddiqui, J.A.; Ottenbrite, R.M. Effects of surface modification of glass beads with poly(acrylic acid). Des. Monomers Polym. 2002, 5, 173–182. [Google Scholar] [CrossRef] [Green Version]
- To, T.D.; Nguyen, A.T.; Phan, K.N.T.; Truong, A.T.T.; Doan, T.C.D.; Dang, C.M. Modification of silicon nitride surfaces with GOPES and APTES for antibody immobilization: Computational and experimental studies. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 045006. [Google Scholar] [CrossRef]
- Yamada, K.; Ishiguro, Y.; Kimura, Y.; Asamoto, H.; Minamisawa, H. Two-step grafting of 2-hydroxyethyl methacrylate (HEMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) onto a polyethylene plate for enhancement of Cr(VI) ion adsorption. Environ. Technol. 2017, 40, 855–969. [Google Scholar] [CrossRef]
- Kanan, S.M.; Tze, W.T.Y.; Tripp, C.P. Method to Double the surface concentration and control the orientation of adsorbed (3-aminopropyl)dimethylethoxysilane on silica powders and glass slides. Langmuir 2002, 18, 6623–6627. [Google Scholar] [CrossRef]
- Zhu, M.; Lerum, M.Z.; Chen, W. How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 2012, 28, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, M.P.; Rao, L.; Gennerich, A. Covalent immobilization of microtubules on glass surfaces for molecular motor force measurements and other single-molecule assays. Methods Mol. Biol. 2014, 1136, 137–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, B.; Jiang, G.; An, F. Preparation of iminodiacetic acid -type composite chelating material IDAA-PGMA/SiO2 and preliminary studies on adsorption behavior of heavy metal ions and rare earth ions. J. Appl. Polym. Sci. 2012, 125, 2529–2538. [Google Scholar] [CrossRef]
- Liu, X.; Tokura, S.; Haruki, M.; Nishi, N.; Sakairi, N. Surface modification of nonporous glass beads with chitosan and their adsorption property for transition metal ions. Carbohyd. Polym. 2002, 49, 103–108. [Google Scholar] [CrossRef]
- Samthong, C.; Laine, R.M.; Somwangthanaroj, A. Synthesis and characterization of organic/inorganic epoxy nanocomposites from poly(aminopropyl/phenyl)silsesquioxanes. J. Appl. Polym. Sci. 2013, 128, 3601–3608. [Google Scholar] [CrossRef] [Green Version]
- Bashouti, M.Y.; Paska, Y.; Puniredd, S.R.; Stelzner, T.; Christiansen, S.; Haick, H. Silicon nanowires terminated with methyl functionalities exhibit stronger Si-C bonds than equivalent 2D surfaces. Phys. Chem. Chem. Phys. 2009, 11, 3845–3848. [Google Scholar] [CrossRef]
- Buet, E.; Sauder, C.; Poissonnet, S.; Brender, P.; Gadiou, R.; Vix-Guterl, C. Influence of chemical and physical properties of the last generation of silicon carbide fibres on the mechanical behaviour of SiC/SiC composite. J. Eur. Ceram. Soc. 2012, 32, 547–557. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Seczkowska, M.; Deryło-Marczewska, A.; Blachnio, M. Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: Effect of temperature. Adsorption 2016, 22, 777–790. [Google Scholar] [CrossRef] [Green Version]
- Holyer, R.H.; Baldwin, H.W. Oxygen exchange between chromium(VI) oxyanions and water. Can. J. Chem. 1967, 45, 413–419. [Google Scholar] [CrossRef]
- Yavuz, A.G.; Dincturk-Atalay, E.; Uygun, A.; Dode, F.; Aslan, E. A comparison study of adsorption of Cr(VI) from aqueous solutions onto alkyl-substituted polyaniline/chitosan composites. Desalination 2011, 279, 325–331. [Google Scholar] [CrossRef]
- Yamada, K.; Takada, A.; Konishi, A.; Kimura, Y.; Asamoto, H.; Minamisawa, H. Hexavalent Cr ion adsorption and desorption behaviour of expanded poly (tetrafluoro)ethylene films grafted with 2-(dimethylamino)ethyl methacrylate. Environ. Technol. 2021, 42, 1885–1898. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Feia, J.; Liana, H.; Mao, L.; Cuic, X. Development of a novel amine- and carboxyl-bifunctionalized hybrid monolithic column for non-invasive speciation analysis of chromium. Talanta 2020, 212, 120799. [Google Scholar] [CrossRef] [PubMed]
- Netzahuatl-Muñoz, A.R.; Cristiani-Urbina, M.C.; Cristiani-Urbina, E. Chromium biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark: Kinetics, equilibrium an thermodynamic studies. PLoS ONE 2015, 10, 0137086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barkat, M.; Nibou, D.; Chegrouche, S.; Mellah, A. Kinetics and thermodynamics studies of chromium(VI) ions adsorption onto activated carbon from aqueous solutions. Chem. Eng. Proc. 2009, 48, 38–47. [Google Scholar] [CrossRef]
- Ho, Y.S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, B136, 681–689. [Google Scholar] [CrossRef] [Green Version]
- Gorzin, F.; Abadi, M.M.B.R. Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies. Adsopt. Sci. Technol. 2018, 36, 149–169. [Google Scholar] [CrossRef]
- Duranoğlu, D.; Trochimczuk, A.W.; Beker, U. Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chem. Eng. J. 2012, 187, 193–202. [Google Scholar] [CrossRef]
- Dursun, A.Y. A comparative study on determination of the equilibrium, kinetic and thermodynamic parameters of biosorption of copper (II) and lead (II) ions onto pretreated Aspergillus niger. Biochem. Eng. J. 2006, 28, 187–195. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civil. Eng. 1963, 89, 31–60. [Google Scholar] [CrossRef]
- Hwang, K.; Shim, W.; Kim, Y.; Kim, G.; Choi, C.; Kang, S.; Cho, D. Dye adsorption mechanisms in TiO2 films, and their effects on the photodynamic and photovoltaic properties in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2015, 17, 21974–21981. [Google Scholar] [CrossRef]
- Vasiliu, S.; Bunia, I.; Racovita, S.; Neagu, V. Adsorption of cefotaxime sodium salt on polymer coated ion exchange resin microparticles: Kinetics, equilibrium and thermodynamic studies. Carbohyd. Polym. 2011, 85, 376–387. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Freundlich, H. Über die in Adsorption Lösungen. Zeit. Phys. Chem. 1907, 57, 385–470. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef] [PubMed]
- Kitao, Y.; Kuramochi, R.; Ma, Z.; Kimura, Y.; Asamoto, H.; Minamisawa, H.; Yamada, K. Evaluation of adsorption behavior of chromium(VI) on 2-(dimethylamino)ethyl methacrylate grafted polyethylene meshes. Trans. Mater. Res. Soc. Jpn. 2020, 45, 23–30. [Google Scholar] [CrossRef]
- Çiftçi, H.; Ersoy, B.; Ecvin, A. Synthesis, characterization and Cr(VI) adsorption properties of modified magnetite nanoparticles. Acta Phys. Pot. A 2017, 132, 564–569. [Google Scholar] [CrossRef]
- Nasanjargal, S.; Munkhpurev, B.; Kano, N.; Kim, H.; Ganchimeg, Y. The removal of chromium(VI) from aqueous solution by amine-functionalized zeolite: Kinetics, thermodynamics, and equilibrium Study. J. Environ. Protect. 2021, 12, 654–675. [Google Scholar] [CrossRef]
- Araghi, S.H.; Entezari, M.H.; Chamsaz, M. Modification of mesoporous silica magnetite nanoparticles by 3-aminopropyltriethoxysilane for the removal of Cr(VI) from aqueous solution. Microporous Mesoporous Mater. 2015, 218, 101–111. [Google Scholar] [CrossRef]
- Sahoo, J.K.; Paikra, S.K.; Baliarsingh, A.; Panda, D.; Rath, S.; Mishra, M.; Shoo, H. Surface functionalization of graphene oxide using amino silane magnetic nanocomposite for chromium(VI) removal and bacterial treatment. Nano Exp. 2020, 1, 010062. [Google Scholar] [CrossRef]
- Nnadozie, E.; Ajibade, P.A. Adsorption, kinetic and mechanistic studies of Pb(II) and Cr(VI) ions using APTES functionalized magnetic biochar. Microporous Mesoporous Mater. 2021, 309, 110573. [Google Scholar] [CrossRef]
- Madri, R.K.; Tiwari, D.; Sinha, I. Efficient removal of chromate ions from aqueous solution using a highly cost-effective ferric coordinated [3-(2-aminoethylamino)propyl] trimethoxysilane–MCM-41 adsorbent. RSC Adv. 2021, 11, 11204–11214. [Google Scholar] [CrossRef] [PubMed]
Sample | ANH | AalkylNH | Q | Adsorption Ratio | |
---|---|---|---|---|---|
(mmol/g) | (mmol/g) | (mmol/g) | amino group (1) | alkylamino chain (2) | |
AEAPTES-silica beads | 0.220 | 0.110 | 0.074 | 0.365 | 0.673 |
AHAMTES-silica beads | 0.220 | 0.110 | 0.004 | 0.018 | 0.036 |
AEAEAPTMS-silica beads | 0.521 | 0.171 | 0.116 | 0.223 | 0.678 |
ANH (mmol/g) | (mmol/g) | (mmol/g) | k1 (1/h) | r2 | Time Range (min) |
---|---|---|---|---|---|
0.030 | 0.0281 | 0.0284 | 5.35 | 0.9868 | 16 |
0.080 | 0.0579 | 0.0563 | 5.67 | 0.9919 | 16 |
0.160 | 0.0755 | 0.0756 | 3.12 | 0.9987 | 20 |
0.220 | 0.0738 | 0.0723 | 3.52 | 0.9837 | 12 |
0.270 | 0.0771 | 0.0751 | 2.35 | 0.9828 | 20 |
ANH (mmol/g) | (mmol/g) | (mmol/g) | k2 (mg/mmol·h) | r2 | Time Range (min) |
---|---|---|---|---|---|
0.030 | 0.0281 | 0.0284 | 0.074 | 0.9992 | 180 |
0.080 | 0.0579 | 0.0576 | 1.15 | 0.9993 | 300 |
0.160 | 0.0755 | 0.0775 | 0.145 | 0.9992 | 300 |
0.220 | 0.0738 | 0.0778 | 0.161 | 0.9989 | 240 |
0.270 | 0.0771 | 0.0809 | 0.120 | 0.9942 | 180 |
ANH (mmol/g) | kid1 (mg/g·min1/2) | Time Range (min) | kid2 (mg/g·min1/2) | Time Range (min) | kid3 (mg/g·min1/2) | Time Range (min) |
---|---|---|---|---|---|---|
0.030 | 0.0060 | 1–20 | 0.0027 | 20–60 | 0 | 60–180 |
0.080 | 0.0121 | 1–20 | 0.0051 | 20–50 | 0 | 50–180 |
0.160 | 0.0142 | 1–20 | 0.0058 | 20–50 | 0 | 50–180 |
0.220 | 0.0141 | 1–20 | 0.0048 | 20–60 | 0 | 60–180 |
0.270 | 0.0140 | 1–30 | 0.0048 | 30–60 | 0 | 60–180 |
Langmuir Isotherm | Freundlich Isotherm | ||
---|---|---|---|
Qmax (mmol/g) | 0.160 | n | 1.47 |
KL (1/min) | 4.63 | KF (dm3/mmol)1/n | 0.226 |
r2 | 0.9994 | r2 | 0.9893 |
Eluent | Desorption % | Desorption Rate | t1/2 |
---|---|---|---|
(mg/min) | (min) | ||
0.50 mM NaCl | 89.7 | 0.178 | 1.80 |
0.10 M NH4Cl | 100 | 0.146 | 2.28 |
0.50 mM NaOH | 97.4 | 0.060 | 5.37 |
Sample | ANH | AalkylNH | Qeq | Adsorption Ratio | |
---|---|---|---|---|---|
(mmol/g) | (mmol/g) | (mmol/g) | amino group (1) | alkylamino chain (2) | |
EDA-silica beads | 0.276 | 0.138 | 0.101 | 0.365 | 0.731 |
DETA-silica beads | 0.479 | 0.160 | 0.151 | 0.315 | 0.946 |
TETA-silica beads | 0.674 | 0.169 | 0.192 | 0.285 | 1.42 |
PEHA-silica beads | 0.867 | 0.144 | 0.201 | 0.232 | 1.39 |
Sample | Reaction Time | ANH | APEI | Qeq | Adsorption Ratio | |
---|---|---|---|---|---|---|
(h) | (mmol/g) | (mmol/g) | (mmol/g) | amino group (1) | PEI chain (2) | |
0.6KPEI-silica beads | 24 | 0.483 | 0.0347 | 0.320 | 0.663 | 9.22 |
1.8KPEI-silica beads | 24 | 0.250 | 0.00598 | 0.080 | 0.320 | 13.4 |
10KPEI-silica beads | 24 | 0.271 | 0.00117 | 0.067 | 0.248 | 57.3 |
72 | 0.420 | 0.00181 | 0.115 | 0.273 | 63.5 |
Adsorbents | pH | Temp. | Dose of Adsorbent | Init. Conc. | Q | Ref. |
---|---|---|---|---|---|---|
(°C) | (g/dm3) | (mg/dm3) | (mg/g) | |||
AEAPTES-silica beads | 3 | 30 | 0.20 | 10.4 | 3.85 | this study |
15.6 | 4.72 | |||||
PEHA-silica beads | 3 | 30 | 0.20 | 10.4 | 10.5 | |
0.6KPEI-silica beads | 3 | 30 | 0.20 | 10.4 | 16.6 | |
APTES-SBA-15 | 2.0 | 25 | 0.5 | 100 | 71.5 | [8] |
DAEAPTS-grafted SBA-15 | 3 | 30 | 1.0 | 100 | 81.22 | [11] |
DPC-functionalized SBA-15 | 3 | 25 | 4.0 | 100 | 15.1 | [12] |
APTES-nanoporous silicon | 2 | 25 | unknown | 50 | 40.8 | [13] |
APTES-Fe3O4@SiO2 | 3 | 25 | 0.5 | 10 | 17.4 | [46] |
APTES-zeolite | 3 | 25 | 2.0 | 50 | 11.4 | [47] |
APTES-mesoporous silica magnetite | 2 | 25 | 14 | 30 | 19.7 | [48] |
APTES-Fe3O4-graphene oxide | 3 | 25 | 1.5 | 20 | 6.74 | [49] |
APTES-Fe3O4-biochar | 3 | 30 | 1.0 | 10 | 4.89 | [50] |
100 | 33.10 | |||||
MCM-41-AEAPTES | 3 | 25 | 1.0 | 50 | 49.5 | [51] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishino, A.; Taki, A.; Asamoto, H.; Minamisawa, H.; Yamada, K. Kinetic, Isotherm, and Equilibrium Investigation of Cr(VI) Ion Adsorption on Amine-Functionalized Porous Silica Beads. Polymers 2022, 14, 2104. https://doi.org/10.3390/polym14102104
Nishino A, Taki A, Asamoto H, Minamisawa H, Yamada K. Kinetic, Isotherm, and Equilibrium Investigation of Cr(VI) Ion Adsorption on Amine-Functionalized Porous Silica Beads. Polymers. 2022; 14(10):2104. https://doi.org/10.3390/polym14102104
Chicago/Turabian StyleNishino, Anzu, Ayane Taki, Hiromichi Asamoto, Hiroaki Minamisawa, and Kazunori Yamada. 2022. "Kinetic, Isotherm, and Equilibrium Investigation of Cr(VI) Ion Adsorption on Amine-Functionalized Porous Silica Beads" Polymers 14, no. 10: 2104. https://doi.org/10.3390/polym14102104
APA StyleNishino, A., Taki, A., Asamoto, H., Minamisawa, H., & Yamada, K. (2022). Kinetic, Isotherm, and Equilibrium Investigation of Cr(VI) Ion Adsorption on Amine-Functionalized Porous Silica Beads. Polymers, 14(10), 2104. https://doi.org/10.3390/polym14102104