Biodegradable Nonwoven Agrotextile and Films—A Review
Abstract
:1. Introduction
2. Biodegradation, Related Standards and Test Methods
Standards and Methods of Biodegradation
3. Biodegradable Nonwoven Agrotextile and Films
3.1. Agrotextile from Natural Fibres
3.2. Mulches from Natural Fibres
4. Biodegradable Nonwoven Agrotextile and Films from Cellulose Regenerates and Biopolymers
4.1. Cellulose Regenerates and Biopolymers in Agrotextile
- Starch based biodegradable plastics;
- Cellulose based biodegradable plastics;
- Biodegradable plastics obtained via chemical synthesis;
- Biodegradable plastics produced by bacteria;
- Biodegradable plastics of petrochemical origin.
4.2. Nonwoven Mulches and Films Made of Cellulose Regenerates, Biopolymers, and Their Blends
5. Recycled Mulches
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muthu, S.S.; Gardetti, M.A. Sustainability in the Textile and Apparel Industries, 1st ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Goswami, P.; O’Haire, T. Developments in the Use of Green (biodegradable), Recycled and Biopolymer Materials in Technical Nonwovens. In Advances in Technical Nonwovens, 1st ed.; Kellie, G., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 97–114. [Google Scholar]
- Chen, Y.; Leng, Y.; Liu, X.; Wang, J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environ. Pollut. 2020, 257, 113449. [Google Scholar] [CrossRef]
- Weber, C.J.; Opp, C. Spatial patterns of mesoplastics and coarse microplastics in floodplain soils as resulting from land use and fluvial processes. Environ. Pollut. 2020, 267, 115390. [Google Scholar] [CrossRef]
- Grand View Research: Agro Textile Market Size, Share Industry Report, 2021–2028. Report ID: GVR-2-68038-272-3. 2021. Available online: https://www.grandviewresearch.com/industry-analysis/agro-textiles-market (accessed on 19 May 2022).
- Wang, W.; Ge, J.; Yu, X.; Li, H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci. Total Environ. 2020, 708, 134841. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Sci. Total Environ. 2021, 780, 146546. [Google Scholar] [CrossRef] [PubMed]
- Akdogan, Z.; Guven, B. Microplastics in the environment: A critical review of current understanding and identification of future research needs. Environ. Pollut. 2019, 254, 113011. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wen, Y.; Marshall, M.R.; Zhao, J.; Gui, H.; Yang, Y.; Zeng, Z.; Jones, D.L.; Zang, H. Microplastics as an emerging threat to plant and soil health in agroecosystems. Sci. Total Environ. 2021, 787, 147444. [Google Scholar] [CrossRef]
- Van den Berg, P.; Huerta-Lwanga, E.; Corradini, F.; Geissen, V. Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environ. Pollut. 2020, 261, 114198. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Zou, M.; Jia, Z.; Zhou, S.; Li, Y. Microplastics in soils: A review of methods, occurrence, fate, transport, ecological and environmental risks. Sci. Total Environ. 2020, 748, 141368. [Google Scholar] [CrossRef]
- Ibarra-Jiménez, L.; Hugolira-Saldivar, R.; Valdez-Aguilar, L.A.; Lozano-Del Rio, J. Colored plastic mulches affect soil temperature and tuber production of potato. Acta Agric. Scand. 2011, 61, 365–371. [Google Scholar] [CrossRef]
- Yan, C.R.; Liu, E.K.; Shu, F.; Liu, Q.; Liu, S.; He, W.Q. Review of agricultural plastic mulching and its residual pollution and prevention measures in China. J. Agric. Res. Environ. 2014, 31, 95–102. [Google Scholar] [CrossRef]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef] [Green Version]
- Gong, D.; Hao, W.; Mei, X.; Gao, X.; Liu, Q.; Caylor, K. Warmer and wetter soil stimulates assimilation more than respiration in rainfed agricultural ecosystem on the China Loess Plateau: The role of partial plastic film mulching tillage. PLoS ONE 2015, 10, e0136578. [Google Scholar]
- Kim, Y.; Berger, S.; Kettering, J.; Tenhunen, J.; Haas, E.; Kiese, R. Simulation of N2O emissions and nitrate leaching from plastic mulch radish cultivation with Landscape DNDC. Ecol. Res. 2014, 29, 441–454. [Google Scholar] [CrossRef]
- Bai, J.; Wang, J.; Chen, X.; Luo, G.; Shi, H.; Li, L.; Li, J. Seasonal and inter-annual variations in carbon fluxes and evapotranspiration over cotton field under drip irrigation with plastic mulch in an arid region of Northwest China. J. Arid Land 2015, 7, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Wang, J.; Zhang, H.; Shi, H.; Fei, Y.; Huang, S.; Tong, Y.; Wen, D.; Luo, Y.; Barceló, D. Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. J. Hazard. Mater. 2019, 388, 121814. [Google Scholar] [CrossRef] [PubMed]
- Morawicki, R.O.; González, D.J.D. Focus: Nutrition and Food Science: Food Sustainability in the Context of Human Behavior. Yale J. Biol. Med. 2018, 91, 191. [Google Scholar]
- European Environment Agency. Down to Earth: Soil Degradation and Sustainable Development in Europe; European Environment Agency: Copenhagen, Denmark, 2000; Available online: https://www.eea.europa.eu/publications/Environmental_issue_series_16 (accessed on 13 December 2021).
- Ngosong, C.; Okolle, J.; Tening, A. Mulching: A Sustainable Option to Improve Soil Health. In Soil Fertility Management for Sustainable Development, 1st ed.; Panpatte, D., Jhala, Y., Eds.; Springer: Singapore, 2019; pp. 231–249. [Google Scholar]
- Eunomia; European Commission. Project Conducted for the European Commission DG Environment, Conventional and Biodegradable Plastics in Agriculture for the European Commission DG Environment. Available online: https://www.eunomia.co.uk/reports-tools/conventional-and-biodegradable-plastics-in-agriculture/ (accessed on 12 December 2021).
- Shaari, M.F.; Isa, H.M.M.; Rashid, A.H.A.; Sunar, N.M.; Mahmood, S.; Ismail, N.; Kassim, A.S.M.; Marsi, N. Biodegradability Characterization of Cotton Waste Planting Bag Prototype. In Advances in Material Sciences and Engineering, 1st ed.; Awang, M., Emamian, S., Yusof, F., Eds.; Springer: Singapore, 2019; pp. 453–464. [Google Scholar]
- Palamutcu, S.; Devrent, N. Technical Textiles for Agricultural Applications. Int. Interdiscip. J. Sci. Res. 2017, 3, 1–8. [Google Scholar]
- Hartikainen, S.H. Biodegradability of Nonwoven Fabrics. Biodegradability of Nonwoven Fabrics. Bachelor’s Thesis, Degree Programe in Enviromental Engeneering-Tampere University of Applied Science, Tampere, Finland, May 2015. [Google Scholar]
- Wang, X.L.; Yang, K.K.; Wang, Y.Z. Properties of Starch Blends with Biodegradable Polymers. J. Macromol. Sci. Part C Polym. Rev. 2003, 43, 385–409. [Google Scholar] [CrossRef]
- Mohee, R.; Unmar, G.; Mudhoo, A.; Khadoo, P. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manag. 2008, 28, 1624–1629. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Gautam, M.; Maurya, H.K. Recent development of biodegradation techniques of polymer. Int. J. Res. Granthaalayah 2018, 6, 414–452. [Google Scholar] [CrossRef]
- Bátori, V.; Åkesson, D.; Zamani, A.; Taherzadeh, M.; Horváth, I.S. Anaerobic degradation of bioplastics: A review. Waste Manag. 2018, 80, 406–413. [Google Scholar] [CrossRef]
- Egan, J.; Salmon, S. Strategies and progress in synthetic textile fiber biodegradability. SN Appl. Sci. 2021, 4, 1–36. [Google Scholar] [CrossRef]
- Restrepo-Osorio, A.; Álvarez-López, C.; Jaramillo-Quiceno, N.; Fernández-Morales, P. Agrotextiles and Crop Protection Textiles. In High Performance Technical Textiles, 1st ed.; Roshan, P., Ed.; John Wiley & Sons Ltd.: Chichester, UK, 2019; Volume 10, pp. 279–318. [Google Scholar]
- Briassoulis, D.; Degli Innocenti, F. Standards for Soil Biodegradable Plastics. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture, 1st ed.; Malinconico, M., Ed.; Springer: Heidelberg, Germany, 2017; pp. 139–168. [Google Scholar]
- Maraveas, C. Production of Sustainable and Biodegradable Polymers from Agricultural Waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Azammi, A.M.N.; Ilyas, R.A.; Sapuan, S.M.; Ibrahim, R.; Atikah, M.S.N.; Asrofi, M.; Atiqah, A. Characterization Studies of Biopolymeric Matrix and Cellulose Fibres-Based Composites Related to Functionalized Fibre-Matrix Interface. In Interfaces in Particle and Fibre Reinforced Composites, 1st ed.; Goh, K.L., Aswathi, M.K., De Silva, R.T., Sabu, T., Eds.; Woodhead Publishing: Sawston, UK, 2020; Volume 3, pp. 29–93. [Google Scholar]
- Guerrini, S.; Borreani, G.; Voojis, H. Biodegradable Materials in Agriculture: Case Histories and Perspectives. In Soil Degradable Bioplastics for a Sustainable Modern Agriculture. Green Chemistry and Sustainable Technology, 1st ed.; Malinconico, M., Ed.; Springer: Heidelberg, Germany, 2017; pp. 35–65. [Google Scholar]
- Vinod, A.; Sanjay, M.R.; Suchart, S.; Jyotishkumar, P. Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites. J. Clean Prod. 2020, 258, 120978. [Google Scholar] [CrossRef]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A Review of Natural Fibers Used in Biocomposites: Plant, Animal and Regenerated Cellulose Fibers. Polym. Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Sanjay, M.; Yogesha, B. Studies on natural/glass fiber reinforced polymer hybrid composites: An evolution. Mater Today Proc. 2017, 4, 2739–2747. [Google Scholar] [CrossRef]
- Bhavani, K.; Mallikarjun, N.; Sunilkumar, N.M. Agro textiles—Their applications in agriculture and scope for utilizing natural fibers in agro tech sector. Int. J. Appl. Home Sci. 2017, 4, 653–662. [Google Scholar]
- Asim, M.; Saba, N.; Jawaid, M.; Nasir, M. Potential of natural fiber/biomass filler-reinforced polymer composites in aerospace applications. In Sustainable Composites for Aerospace Applications; Jawaid, M., Thariq, M., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 253–268. [Google Scholar]
- Bordoloi, S.; Hussain, R.; Garg, A.; Sreedeep, S.; Zhou, W.H. Infiltration characteristics of natural fiber reinforced soil. Transp. Geotech. 2017, 12, 37–44. [Google Scholar] [CrossRef]
- Smole, M.S.; Hribernik, S.; Kleinschek, K.S.; Kreže, T. Plant Fibres for Textile and Technical Applications. In Advances in Agrophysical Research; Grundas, S., Ed.; InTech: London, UK, 2013; pp. 369–397. [Google Scholar]
- Gutarowska, B.; Michalski, A. Microbial degradation of woven fabrics and protection against biodegradation. In Woven Fabrics; Jeon, H.Y., Ed.; InTech: Shanghai, China, 2012; pp. 267–296. [Google Scholar]
- Zakikhani, P.; Zahari, R.; Sultan, M.T.H.; Majid, D.L. Extraction and preparation of bamboo fibre-reinforced composites. Mater. Des. 2014, 63, 820–828. [Google Scholar] [CrossRef]
- Sorieul, M.; Dickson, A.; Hill, S.J.; Pearson, H. Plant Fibre: Molecular Structure and Biomechanical Properties, of a Complex Living Material, Influencing Its Deconstruction towards a Biobased Composite. Materials 2016, 9, 618. [Google Scholar] [CrossRef]
- Mohamed, S.A.N.; Zainudin, E.S.; Sapuan, S.M.; Azaman, M.D.; Arifin, A.M.T. Introduction to natural fiber reinforced vinyl ester and vinyl polymer composites. In Natural Fibre Reinforced Vinyl Ester and Vinyl Polymer Composites; Sapuan, S.M., Ismail, H., Zainudin, E.S., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 1–25. [Google Scholar]
- Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S.M.; Asim, M.; Saba, N. Natural fiber reinforced polylactic acid composites: A review. Polym. Compos. 2019, 40, 446–463. [Google Scholar] [CrossRef]
- Hosseini, S.B. Natural Fiber Polymer Nanocomposites. In Fiber-Reinforced Nanocomposites: Fundamentals and Applications, 1st ed.; Han, B., Sharma, S., Nguyen, T., Longbiao, L., Bhat, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 279–299. [Google Scholar]
- Marczak, D.; Lejcuś, K.; Misiewicz, J. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020, 268, 122129. [Google Scholar] [CrossRef]
- Bhagabati, P. Biopolymers and Biocomposites-Mediated Sustainable High-Performance Materials for Automobile Applications. In Sustainable Nanocellulose and Nanohydrogels from Natural Sources; Mohammad, F., Al-Lohedan, H.A., Jawaid, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 197–216. [Google Scholar]
- Mwaikambo, L.Y.; Ansell, M.P. Mechanical properties of alkali treated plant fibers and their potential as reinforcement materials. I. Hemp fibers. J. Mater. Sci. 2006, 41, 2483–2496. [Google Scholar] [CrossRef]
- Mwaikambo, L.Y. Review of the history, properties, and application of plant fibres. Afr. J. Sci. Technol. 2006, 7, 120–133. [Google Scholar]
- Belhassen, R.; Boufi, S.; Vilaseca, F.; Lopez, J.; Mendez, J.; Franco, E.; Pèlach, M.A.; Mutjé, P. Biocomposites based on Alfa fibersand starch-based biopolymer. Polym. Adv. Technol. 2009, 20, 1068–1075. [Google Scholar] [CrossRef]
- Rao, K.M.M. Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos. Struct. 2007, 77, 288–295. [Google Scholar] [CrossRef]
- Idicula, M.; Joseph, K.; Thomas, S. Mechanical Performance of Short Banana/Sisal Hybrid Fiber Reinforced Polyester Composites. J. Reinf. Plast. Compos. 2009, 29, 12–29. [Google Scholar] [CrossRef]
- Bismarck, A.; Aranberri-Askargorta, I.; Springer, J.; Mohanty, A.K.; Misra, M.; Hinrichsen, G.; Czapla, S. Surface characterization of natural fibers: Surface properties and the water up-take behavior of modified sisal and coir fibers. Green Chem. 2001, 3, 100–107. [Google Scholar] [CrossRef]
- Malkapuram, R.; Kumar, V.; Singh, Y. Recent Development in Natural Fiber Reinforced Polypropylene Composites. J. Reinf. Plast. Compos. 2009, 28, 1169–1189. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Smyslov, A.G.; Vinogradov, M.I.; Palchikova, E.E.; Legkov, S.A. Flax Noils as a Source of Cellulose for the Production of Lyocell Fibers. Fibers 2022, 10, 45. [Google Scholar] [CrossRef]
- Čunko, R.; Andrassy, M. Vlakna; Zrinski D.D.: Čakovec, Croatia, 2005. [Google Scholar]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural Fibre Composites and Their Applications: A Review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Cho, D. Effects of Alkali-Treatment and Feeding Route of Henequen Fiber on the Heat Deflection Temperature, Mechanical, and Impact Properties of Novel Henequen Fiber/Polyamide 6 Composites. J. Compos. Sci. 2022, 6, 89. [Google Scholar] [CrossRef]
- Zhu, Y.; Huang, J.; Wang, K.; Wang, B.; Sun, S.; Lin, X.; Song, L.; Wu, A.; Li, H. Characterization of Lignin Structures in Phyllostachys edulis (Moso Bamboo) at Different Ages. Polymers 2020, 12, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdul Khalil, H.P.S.; Bhat, I.U.H.; Jawaid, M.; Zaidon, A.; Hermawan, D.; Hadi, Y.S. Bamboo fibre reinforced biocomposites: A review. Mater. Des. 2012, 42, 353–368. [Google Scholar] [CrossRef]
- Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H. The role of allelopathy in agricultural pest management. Pest Manag. Sci. 2011, 67, 493–506. [Google Scholar] [CrossRef]
- Greer, L.; Dole, J.M. Aluminum foil, aluminium-painted, plastic, and degradable mulches increase yields and decrease insectvectored viral diseases of vegetables. Hort. Technol. 2003, 13, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, Z.; Wollmann, C.; Schaefer, M.; Buchmann, C.; David, J.; Tröger, J.; Muñoz, K.; Frör, O.; Schaumann, G. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? Sci. Total Environ. 2016, 550, 690–705. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Dhaliwal, L.K.; Buttar, G.S.; Kingra, P.K.; Singh, S.; Kaur, S. Effect of mulching, row direction and spacing on microclimate and wheat yield at Ludhiana. J. Agrometeorol. 2019, 21, 42–45. [Google Scholar] [CrossRef]
- Fang, S.; Xie, B.; Liu, J. Soil nutrient availability, poplar growth and biomass production on degraded agricultural soil under fresh grass mulch. For. Ecol. Manag. 2008, 255, 1802–1809. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, H. Plastic film mulching stimulates brace root emergence and soil nutrient absorption of maize in an arid environment. J. Sci. Food Agric. 2020, 100, 540–550. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, E.; Lamont, W.J.; Orzolek, M.D. Newspaper mulches for suppressing weeds for organic high-tunnel cucumber production. Hort. Technol. 2008, 18, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Arentoft, B.W.; Ali, A.; Streibig, J.C.; Andreasen, C. A new method to evaluate the weed-suppressing effect of mulches: A comparison between spruce bark and cocoa husk mulches. Weed Res. 2013, 53, 169–175. [Google Scholar] [CrossRef]
- Genger, R.K.; Rouse, D.I.; Charkowski, A.O. Straw mulch increases potato yield and suppresses weeds in an organic production system. Biol. Agric. Hortic. 2018, 34, 53–69. [Google Scholar] [CrossRef]
- Guan, Z.; Jia, Z.; Zhao, Z.; You, Q. Dynamics and distribution of soil salinity under long-term mulched drip irrigation in an arid area of northwestern china. Water 2019, 11, 1225. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, Y.; Wang, J.; Pang, H.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res. 2016, 155, 363–370. [Google Scholar] [CrossRef]
- Dawes, T.Z. Reestablishment of ecological functioning by mulching and termite invasion in a degraded soil in an Australian savanna. Soil Biol. Biochem. 2010, 42, 1825–1834. [Google Scholar] [CrossRef]
- Van Schoor, L.; Stassen, P.J.C.; Botha, A. Effect of organic material and biological amendments on pear tree performance and soil microbial and chemical properties. Acta Hortic. 2012, 933, 205–214. [Google Scholar] [CrossRef]
- Amare, G.; Desta, B. Coloured plastic mulches: Impact on soil properties and crop productivity. Chem. Biol. Technol. Agric. 2021, 8, 4. [Google Scholar] [CrossRef]
- Arshad, K.; Skrifvars, M.; Vivod, V.; Valh, J.; Voncina, B. Biodegradation of natural textile materials in soil. Tekstilec 2014, 57, 118–132. [Google Scholar] [CrossRef]
- Yang, Y.; Li, P.; Jiao, J.; Yang, Z.; Lv, M.; Li, Y.; Zhou, C.; Wang, C.; He, Z.; Liu, Y.; et al. Renewable sourced biodegradable mulches and their environment impact. Sci. Hortic. 2020, 268, 109375. [Google Scholar] [CrossRef]
- Miao, M.; Pierlot, A.P.; Millington, K.; Gordon, S.G.; Best, A.; Clarke, M. Biodegradable mulch fabric by surface fibrillation and entanglement of plant fibers. Text. Res. J. 2013, 83, 1906–1917. [Google Scholar] [CrossRef]
- Wortman, S.E.; Kadoma, I.; Crandall, M.D. Assessing the potential for spunbond, nonwoven biodegradable fabric as mulches for tomato and bell pepper crops. Sci. Hortic. 2015, 193, 209–217. [Google Scholar] [CrossRef]
- Nam, S.; Slopek, R.; Wolf, D.; Warnock, M.; Condon, B.D.; Sawhney, P.; Gbur, E.; Reynolds, M.; Allen, C. Comparison of biodegradation of low-weight hydroentangled raw cotton nonwoven fabric and that of commonly used disposable nonwoven fabrics in aerobic Captina silt loam soil. Text. Res. J. 2016, 86, 155–166. [Google Scholar] [CrossRef]
- Park, C.H.; Kang, Y.K.; Im, S.S. Biodegradability of Cellulose Fabrics. J. Appl. Polym. Sci. 2004, 94, 248–253. [Google Scholar] [CrossRef]
- Gabry’s, T.; Fryczkowska, F.; Grzybowska-Pietras, J.; Binia´s, D. Modification and Properties of Cellulose Nonwoven Fabric—Multifunctional Mulching Material for Agricultural Applications. Materials 2021, 14, 4335. [Google Scholar] [CrossRef]
- Zhou, W.; Niu, Y.; Wang, C.; Yang, Y.; Tan, Z.; Yi, Y.; Yu, W.; Wang, H. A Biodegradable Ramie Fiber-Based Nonwoven Film Used for Increasing Oxygen Supply to Cultivated Soil. Appl. Sci. 2018, 8, 1813. [Google Scholar] [CrossRef] [Green Version]
- Debnath, S. Jute-Based Sustainable Agrotextiles, Their Properties and Case Studies. In Roadmap to Sustainable Textiles & Clothing, 1st ed.; Muthu, S., Ed.; Springer: Singapore, 2014; pp. 327–355. [Google Scholar]
- Behera, A.K.; Avancha, S.; Das, N.; Adhikari, B. Mechanical and biodegradation analysis of fully biodegradable eco-friendly natural fiber reinforced sapling pot. Polym. Compos. 2021, 42, 2910–2919. [Google Scholar] [CrossRef]
- Mańkowski, J.; Kubacki, A.; Kołodziej, J.; Mackiewicz-Talarczyk, M.; Baraniecki, P.; Pniewska, I. Hemp Fibre from Crops Grown on Reclaimed Land for the Production of Sanitary Mats. In Natural Fibres: Advances in Science and Technology towards Industrial Applications, 1st ed.; Fangueiro, R., Rana, S., Eds.; Springer: Dordrecht, The Netherlands, 2016; Volume 12, pp. 371–377. [Google Scholar]
- Lamberti, F.M.; Román-Ramírez, L.A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. [Google Scholar] [CrossRef]
- Kubowicz, S.; Booth, A.M. Biodegradability of Plastics: Challenges and Misconceptions. Environ. Sci. Technol. 2017, 51, 12058–12060. [Google Scholar] [CrossRef]
- Sivasubramanian, V. Environmental Sustainability Using Green Technologies, 1st ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; p. 281. [Google Scholar]
- Christian, S.J. Natural Fibre-Reinforced Noncementitious composites (biocomposites). In Nonconventional and Vernacular Construction Materials; Woodhead Publishing: Sawston, UK, 2016; pp. 111–126. [Google Scholar]
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef]
- Deconinck, S.; De Wilde, B. Benefits and Challenges of Bio- and Oxo-Degradable Plastics. Study DSL-1—Final Report for PlasticEurope AISBL. 9 August 2013. Brussel, Belgium. Available online: https://www.ows.be/wp-content/uploads/2013/10/Final-Report-DSL-1_Rev02.pdf (accessed on 18 January 2022).
- Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res. 2017, 35, 132–140. [Google Scholar] [CrossRef]
- Terzopoulou, Z.; Papageorgiou, G.Z.; Papadopoulou, E.; Athanassiadou, E.; Alexopoulou, E.; Bikiaris, D.N. Green composites prepared from aliphatic polyesters and bast fibers. Ind. Crops Prod. 2015, 68, 60–79. [Google Scholar] [CrossRef]
- Sarasini, F. Thermoplastic Biopolymer Matrices for Biocomposites. In Biocomposites for High-Performance Applications; Ray, D., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 81–123. [Google Scholar]
- Lackner, M. Bioplastics. In Kirk-Othmer Encyclopedia of Chemical Technology; Kroschwitz, J.I., Howe-Grant, M., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 1–41. [Google Scholar]
- Shaiju, P.; Dorian, B.-B.; Senthamaraikannan, R.; Padamati, R.B. Biodegradation of Poly (Butylene Succinate) (PBS)/Stearate Modified Magnesium-Aluminium Layered Double Hydroxide Composites under Marine Conditions Prepared via Melt Compounding. Molecules 2020, 25, 5766. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, C.; Duan, C.; Hu, H.; Li, H.; Li, J.; Liu, Y.; Ma, X.; Stavik, J.; Ni, Y. Regenerated Cellulose by the Lyocell Process, a Brief Review of the Process and Properties. BioResources 2018, 13, 4577–4592. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment. Molecules 2020, 25, 3946. [Google Scholar] [CrossRef]
- Nevoralová, M.; Koutný, M.; Ujčić, A.; Starý, Z.; Šerá, J.; Vlková, H.; Šlouf, M.; Fortelný, I.; Kruliš, Z. Structure Characterization and Biodegradation Rate of Poly(ε-caprolactone)/Starch Blends. Front. Mater. 2020, 7, 141. [Google Scholar] [CrossRef]
- Jiang, X.; Bai, Y.; Chen, X.; Liu, W. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod. 2020, 5, 16–25. [Google Scholar] [CrossRef]
- Guo, S.; Li, X.; Zhao, R.; Gong, Y. Comparison of life cycle assessment between lyocell fiber and viscose fiber in China. Int. J. Life Cycle Assess 2021, 26, 1545–1555. [Google Scholar] [CrossRef]
- Sular, V.; Devrim, G. Biodegradation Behaviour of Different Textile Fibres: Visual, Morphological, Structural Properties and Soil Analyses. Fibres Text. East. Eur. 2019, 27, 100–111. [Google Scholar] [CrossRef]
- Bucki, P.; Siwek, P. Organic and non-organic mulches—Impact on environmental conditions, yield, and quality of Cucurbitaceae. Folia Hortic. 2019, 31, 129–145. [Google Scholar] [CrossRef] [Green Version]
- Mddionline. Available online: https://www.mddionline.com/news/synthetic-biodegradable-polymers-medical-devices (accessed on 24 November 2021).
- Kalisz, A.; Siwek, P.; Sulak, K. Influence of spunbond degradable floating row covers on microclimate modification and yield of field cucumber. Span. J. Agric. Res. 2018, 16, e0902. [Google Scholar] [CrossRef]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Puchalski, M.; Siwek, P.; Panayotov, N.; Berova, M.; Kowalska, S.; Krucińska, I. Influence of Various Climatic Conditions on the Structural Changes of Semicrystalline PLA Spun-Bonded Mulching Nonwovens during Outdoor Composting. Polymers 2019, 11, 559. [Google Scholar] [CrossRef] [Green Version]
- Siwek, P.; Libik, A.; Kalisz, A.; Zawiska, I. The effect of biodegradable nonwoven direct covers on yield and quality of winter leek. Folia Hortic. 2013, 25, 61–65. [Google Scholar] [CrossRef] [Green Version]
- Siwek, P.; Domagala-Swiatkiewicz, I.; Bucki, P.; Puchalski, M. Biodegradable agroplastics in 21st century horticulture. Polimery 2019, 64, 480–486. [Google Scholar] [CrossRef]
- Siwek, P.; Kalisz, A.; Domagala-Swiatkiewicz, I. The influence of degradable polymer mulches on soil properties and cucumber yield. Agrochim. Pisa 2015, 59, 108–123. [Google Scholar]
- Dharmalingam, S.; Hayes, D.G.; Wadsworth, L.C.; Dunlap, R.N. Analysis of the time course of degradation for fully biobased nonwoven agricultural mulches in compost-enriched soil. Text. Res. J. 2016, 86, 1343–1355. [Google Scholar] [CrossRef]
- Hablot, E.; Dharmalingam, S.; Hayes, D.G.; Wadsworth, L.C.; Blazy, C.; Narayan, R. Effect of Simulated Weathering on Physicochemical Properties and Inherent Biodegradation of PLA/PHA Nonwoven Mulches. J. Polym. Environ. 2014, 22, 417–429. [Google Scholar] [CrossRef]
- Miros-Kudra, P.; Gzyra-Jagieła, K.; Kudra, M. Physicochemical Assessment of the Biodegradability of Agricultural Nonwovens Made of PLA. Fibres Text. East. Eur. 2021, 29, 26–34. [Google Scholar] [CrossRef]
- Sintim, H.; Bandopadhyay, S.; English, M.E.; Bary, A.I.; DeBruyn, J.; Schaeffer, S.; Miles, C.A.; Reganold, J.P.; Flury, M. Impacts of biodegradable plastic mulches on soil health. Agric. Ecosyst. Environ. 2018, 273, 36–49. [Google Scholar] [CrossRef]
- Bucki, P.; Siwek, P.; Domagała-Świątkiewicz, I.; Puchalski, M. Effect of Agri-Environmental Conditions on the Degradation of Spunbonded Polypropylene Nonwoven with a Photoactivator in Mulched Organically Managed Zucchini. Fibres Text. East. Eur. 2018, 26, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Zawiska, I.; Siwek, P. The effects of PLA biodegradable and polypropylene nonwoven crop mulches on selected components of tomato grown in the field. Folia Hortic. 2014, 26, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Costa, R.; Saraiva, A.; Carvalho, L.; Duarte, E.D.A. The use of biodegradable mulch films on strawberry crop in Portugal. Sci. Hortic. 2014, 173, 65–70. [Google Scholar] [CrossRef]
- Akonda, M.; Alimuzzaman, S.; Shah, D.U.; Rahman, A.M. Physico-Mechanical, Thermal and Biodegradation Performance of Random Flax/Polylactic Acid and Unidirectional Flax/Polylactic Acid Biocomposites. Fibers 2018, 6, 98. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.-C.; Zhang, Y.; Qi, S.-Y.; Li, Y.-Y.; Wang, P. Characterization and analyses of degradable composites made with needle-punched jute nonwoven and polylactic acid (PLA) membrane. Cellulose 2020, 27, 5971–5980. [Google Scholar] [CrossRef]
- Chen, K.-J.; Marsh, T.L.; Tozer, P.R.; Galinato, S.P. Biotechnology to sustainability: Consumer preferences for food products grown on biodegradable mulches. Food Res. Int. 2018, 116, 200–210. [Google Scholar] [CrossRef]
- Antov, P.; Savov, V.; Neykov, N. Utilization of agricultural waste and wood industry residues in the production of natural fiber—Reinforced composite materials. Int. J. Wood Des. Technol. 2017, 6, 64–71. [Google Scholar]
- Siwek, P.; Libik, A.; Zawiska, I. The effect of biodegradable nonwovens in butterhead lettuce cultivation for early harvest. Folia Hortic. 2012, 24, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Sayed, U.; Parte, S. Recycling of Non Woven Waste. Int. J. Adv. Sci. Eng. 2015, 1, 67–71. [Google Scholar]
- Abidi, H.; Rana, S.; Chaouch, W.; Azouz, B.; Aissa, I.B.; Hassen, M.B.; Fangueiro, R. Accelerated weathering of textile waste nonwovens used as sustainable agricultural mulching. J. Ind. Text. 2021, 50, 1079–1110. [Google Scholar] [CrossRef]
- Tan, Z.; Yi, Y.; Wang, H.; Zhou, W.; Yang, Y.; Wang, C. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers. Appl. Sci. 2016, 6, 147. [Google Scholar] [CrossRef] [Green Version]
- Briassoulis, D.; Hiskakis, M.; Babou, E.; Antiohos, S.K.; Papadi, C. Experimental in-vestigation of the quality characteristics of agricultural plastic wastes regarding their re-cycling and energy recovery potential. Waste Manag. 2012, 32, 1090. [Google Scholar] [CrossRef]
- Liu, X.; Chen, C.; Sun, J.; Wang, X. Development of natural fiber-based degradable nonwoven mulch from recyclable mill waste. Waste Manag. 2021, 121, 432–440. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chen, C.; Sun, X.; Wang, X. Multicriteria optimization of a novel degradable nonwoven mulch fabricated from recycled natural fibers using CV-TOPSIS technique. Text. Res. J. 2021, 1–8. [Google Scholar] [CrossRef]
- Yousef, S.; Tatariants, M.; Tichonovas, M.; Sarwar, Z.; Jonuškienė, I.; Kliucininkas, L. A new strategy for using textile waste as a sustainable source of recovered cotton. Resour. Conserv. Recycl. 2019, 145, 359–369. [Google Scholar] [CrossRef]
Measuring Method | Standard | |
---|---|---|
O2 consumption or CO2 production | OECD 304A; 1981 | Inherent biodegradability in soil |
ISO 11266:1994 | Soil quality—Guidance on laboratory testing for biodegradation of organic chemicals in soil under aerobic conditions | |
ASTM D5988-96 | Standard test method for determining aerobic biodegradation in soil of plastic materials or residual plastic materials after composting | |
ISO 17556:2003 | Plastics—Determination of the ultimate aerobic biodegradability in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved |
Fibre | Diameter (μm) | Length (mm) | Cellulose (wt.%) | Hemi Celluloses (wt.%) | Lignin (wt.%) | Pectin (wt.%) | Waxes (wt.%) | Degradation Time (Months) |
---|---|---|---|---|---|---|---|---|
Abaca | 10–30 | 4.6–5.2 | 45.4 | 38.5 | 14.9 | 1.1 | 2.0 | |
Alfa | 14–17 | 1–2 | 37.0 | 21.0 | 22.0 | 10.0 | - | |
Bagasse | 10–34 | 0.8–2.8 | 62.5 | 12.5 | 7.5 | 4.0 | - | |
Banana | 12–30 | 0.4–0.9 | 34.5 | 20.5 | 26.0 | - | - | |
Bamboo stick | 25–88 | 1.5–4.0 | 46.0 | 0.3 | 45.0 | 4.0 | - | 12–36 |
Coir | 7–30 | 0.3–3.0 | 89.0 | 4.0 | 0.8 | 6.0 | 0.6 | |
Cotton | 12–35 | 15–56 | 82.7 | 5.7 | 0.0 | 0.6 | ||
Coconut | 100–450 | 0.3–1 | 70.5 | 16.5 | 2.5 | 0.9 | - | 1–6 |
Flax - single fibres - technical fibres | 12–37 40–620 | 15–20 500–750 | 62.0–72.0 | 18.6–20.6 | 2.0–10.0 | 0.9 | 1.7 | 3 |
Hemp - single fibres - technical fibres | 16–50 40–620 | 10–15 700–1500 | 64.0–78.3 | 16.0–22.4 | 2.9–5.7 | - | 0.8 | 3–8 |
Henequen | 150–250 | 700–800 | 67.0 | 16.0 | 9.0 | 0.2 | 0.5 | |
Jute - single fibres - technical fibres | 18–20 - | 0.8–6.0 2000–3000 | 56.0–71.5 | 13.6–35.0 | 2.9–5.7 | - | 0.5 | 6–18 |
Kapok | 20–43 | 10–35 | 53.5 | 21.0 | 17.0 | 2.0 | - | |
Kenaf | 12–36 | 1.4–11 | 80.5 | 17.5 | 8.3 | 4.0 | - | 6–12 |
Pineapple | 8–41 | 3–8 | 72.0 | 14.0 | 0.8 | 2.0 | - | |
Ramie - single fibres - technical fibres | 50 5000 | 60–250 ~2000 | 60.0 | 11.5 | 8.0 | 1.2 | - | |
Sisal | 100–300 | 600–1500 | 62.5 | 21.0 | 12.0 | 0.8 | 3.0 | 12 |
Biopolymer | Source | Properties | Composting Time, Days | Degradation Time, Months |
---|---|---|---|---|
Polylactide (PLA) | Sugar beet, corn starch, sugar cane | Hydrophobic, compatibility with polyesters, low moisture absorption rate, resistance to UV radiation, low thermal stability (60 °C), compostable improves the stiffness of textiles, low crystallization pace, eco-friendly. | 45–60 | 20 |
Polyhidroxyalkanoates (PHA) | Stored in bacterial cells as reserve material | Good mechanical properties, suitable as biomass material, easy to process, tough and durable, UV-resistant, water-resistant, eco-friendly. | - | 12 |
Poly (ε-caprolactan) (PCL) | Petrol | Low UV resistance, low melting temperature (60 °C) high elasticity, eco-friendly. | 6–28 | - |
Thermoplastic starch blends | Potato, corn, wheat, rice, mixing with bio-based polymers (PLA, PCL) | Hydrophobic character, low permeability to water, better mechanical properties, properties dependent on composition, low cost, global accessibility eco-friendly. | 45–56 | - |
Poly(hydroxylbutyrate) (PHB) | Produced and stored by bacteria | Stiff and brittle, high crystallinity, difficult to process, weak impact resistance, can degrade via hydrolysis at high temperatures, low chemical resistance, suitable for modification. | 21–28 | 6–10 |
Poly(butylenesuccinate) (PBS) | Polycondensation reaction of 1, 4-butanediol with succinic acid | Flexible, excellent impact strength, chemical and thermal resistance, composite material, comparable mechanical properties to PE and PP, processing capacity, eco-friendly. | - | - |
Cellulose acetate (CA) | Acetylation from wood pulp by acetic acid or its anhydride to cellulose | Medium mechanical properties, ductile, scratch and scrub resistant, antistatic, good insulation, oil-resistant, high processing efficiency. | - | - |
Viscose (CV) | Wood pulp | Regeneration of cellulose fibres from solutions of derivatives (e.g., viscose, modal fibres) or by regeneration of cellulose fibres from solutions of cellulose (e.g., cuprammonium). | 60 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopitar, D.; Marasovic, P.; Jugov, N.; Schwarz, I. Biodegradable Nonwoven Agrotextile and Films—A Review. Polymers 2022, 14, 2272. https://doi.org/10.3390/polym14112272
Kopitar D, Marasovic P, Jugov N, Schwarz I. Biodegradable Nonwoven Agrotextile and Films—A Review. Polymers. 2022; 14(11):2272. https://doi.org/10.3390/polym14112272
Chicago/Turabian StyleKopitar, Dragana, Paula Marasovic, Nikola Jugov, and Ivana Schwarz. 2022. "Biodegradable Nonwoven Agrotextile and Films—A Review" Polymers 14, no. 11: 2272. https://doi.org/10.3390/polym14112272
APA StyleKopitar, D., Marasovic, P., Jugov, N., & Schwarz, I. (2022). Biodegradable Nonwoven Agrotextile and Films—A Review. Polymers, 14(11), 2272. https://doi.org/10.3390/polym14112272