Theoretical and Experimental Substantiation of the Efficiency of Combined-Reinforced Glass Fiber Polymer Composite Concrete Elements in Bending
Abstract
:1. Introduction
- (1)
- Determination of rational parameters in terms of formulation and technology;
- (2)
- Obtaining first, glass fiber-reinforced concrete and second, glass fiber polymer composite concrete bending elements of a new type with improved structure and characteristics;
- (3)
- Study from the point of view of theoretical concepts, as well as practical aspects of the structure of such materials and structures, as well as the study of their work from the point of view of experimental test and numerical calculation;
- (4)
- Development of theoretical provisions and substantiation of experimental proposals for the practical industry;
- (5)
- Identifying the most problematic bottlenecks to fill the scientific gap toward joint research between building materials science and building structures, tied to the theory of fiber fibers and polymer composite reinforcing elements.
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Numerical Calculation Method
- (a)
- For —from the condition , where ξ is the relative height of the compressed zone of concrete;
- (b)
- For —from the condition , where .
2.2.2. Experimental Test Method
3. Results
3.1. Numerical Calculation Results
- (1)
- The values of the bending moment of beams reinforced with polymer composite rebar are between the values of the moment of beams with steel reinforcement of class A800 and class A1000, slightly closer to A1000 reinforcement; this applies to each rebar diameter applied (6, 8 and 10 mm);
- (2)
- The values of the bending moment of beams reinforced with glass-composite and basalt-composite reinforcement do not differ;
- (3)
- The values of the limiting bending moment do not change for different classes of concrete but depend on the dimensions of the section of the elements;
- (4)
- The ultimate bending moment of 400 mm × 600 mm beams is approximately 50% greater than that of 400 mm × 400 mm beams for each applied reinforcement diameter;
- (5)
- When replacing 6 mm reinforcement with 8 mm reinforcement, the ultimate bending moment of the beam increases by 77–82%, while an increase in the diameter of the rods from 8 to 10 mm leads to an increase in the bending moment by 54–58%;
- (6)
- An increase in the class of steel reinforcement from A400 to A600 leads to an increase in the ultimate bending moment of beams by 51–55%, from A600 to A800 by 32–35%, from A800 to A1000 by 24–26%;
- (7)
- The ultimate bending moment of members reinforced with GCR 800 × 50 and BCR 800 × 50 polymer composite rebar is 130–160% greater than that of members reinforced with A400 class steel rebar, 50–58% greater than with rebar A600, 14–17% more than with A800 rebar and 7–9% less than with A1000 rebar; this difference depends on the diameter of the reinforcement and the dimensions of the section of the element and is about 50%.
- (1)
- The height of the concrete compression zone of beams reinforced with polymer composite reinforcement exceeds the height of the concrete compression zone of beams with class A1000 steel reinforcement for bar diameters of 6 and 8 mm and is practically comparable to the values of the concrete compression zone of beams with class A1000 steel reinforcement for a diameter of 10 mm;
- (2)
- The values of the height of the compressed zone of concrete beams reinforced with glass–composite and basalt–composite reinforcement do not differ;
- (3)
- The values of the height of the compressed zone of concrete do not change with different sizes of the section of the elements but depend on the class of concrete used;
- (4)
- The compression zone height of B40 concrete is 28–32% less than the compression zone height of B30 concrete for each applied reinforcement diameter;
- (5)
- When replacing reinforcement with a diameter of 6 mm for reinforcement of 8 mm, the height of the compressed zone of the beam concrete increases by 125% for polymer composite reinforcement and up to 850% for A600 steel reinforcement, while an increase in the diameter of the rods from 8 to 10 mm leads to an increase in height compressed zone by 70% for PCR and 130% for A400;
- (6)
- An increase in the class of steel reinforcement depending on the diameter of the rods from A400 to A600 leads to an increase in the height of the compressed zone from 62% to 73%, from A600 to A800 leads to an increase from 47% to 300%, and from A800 to A1000 leads to an increase from 34% to 94%;
- (7)
- The height of the concrete compression zone of elements reinforced with GCR 800 × 50 and BCR 800 × 50 polymer composite rebar is 220–325% greater than that of elements reinforced with A400 class steel rebar, 97–967% greater than with fittings A600, 34–160% more than with fittings A800, and 0–34% more than with fittings A1000; this difference depends on the diameter of the reinforcement and the class of concrete and is about 28–32%.
3.2. Experiment Test Results
3.3. Economic Analysis Results
4. Discussion
5. Conclusions
- (1)
- Theoretically and experimentally substantiated the effectiveness of combined-reinforced glass fiber polymer composite concrete bending elements from the point of view of three aspects: prescription, technological and constructive.
- (2)
- The improvement of the structure and characteristics of glass fiber-reinforced concrete and glass fiber polymer composite concrete bending elements of a new type has been proven; the compressive strength of glass fiber-reinforced concrete with careful observance of rational parameters in terms of formulation and technology has been increased to 20%, the efficiency of glass fiber polymer composite concrete bending elements is comparable to the work of reinforced concrete bending elements with steel reinforcement class A1000 and higher.
- (3)
- Analytical dependences of the type of functions of the characteristics of bent concrete structures on the arguments are proposed—the parameters of combined reinforcement with fiber and polymer composite reinforcement; the synergistic effect of such development is described, and a new coefficient k is proposed—a controlled significant coefficient of the synergistic efficiency of the combined reinforcement.
- (4)
- From a price point of view, the cost of the developed elements is reduced and is economically more profitable (up to 300%), which is confirmed by the economic analysis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azam, R.; Riaz, M.R.; Farooq, M.U.; Ali, F.; Mohsan, M.; Deifalla, A.F.; Mohamed, A.M. Optimization-Based Economical Flexural Design of Singly Reinforced Concrete Beams: A Parametric Study. Materials 2022, 15, 3223. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.-Y.; Zeng, J.-J.; Li, P.-L. A State-of-the-Art Review of FRP-Confined Steel-Reinforced Concrete (FCSRC) Structural Members. Polymers 2022, 14, 677. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.-N.; Yeon, Y.-M.; Ji, S.-W.; Lee, S. Flexural Behavior of RC Beams Using Fe-Based Shape Memory Alloy Rebars as Tensile Reinforcement. Buildings 2022, 12, 190. [Google Scholar] [CrossRef]
- Park, J.; Park, S.-K.; Hong, S. Evaluation of Flexural Behavior of Textile-Reinforced Mortar-Strengthened RC Beam Considering Strengthening Limit. Materials 2021, 14, 6473. [Google Scholar] [CrossRef] [PubMed]
- Kartal, S.; Kalkan, I.; Beycioglu, A.; Dobiszewska, M. Load-Deflection Behavior of Over- and Under-Reinforced Concrete Beams with Hybrid FRP-Steel Reinforcements. Materials 2021, 14, 5341. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, M.; Głodkowska, W. Shear Capacity and Behaviour of Bending Reinforced Concrete Beams Made of Steel Fibre-Reinforced Waste Sand Concrete. Materials 2021, 14, 2996. [Google Scholar] [CrossRef]
- Bawab, J.; Khatib, J.; Jahami, A.; Elkordi, A.; Ghorbel, E. Structural Performance of Reinforced Concrete Beams Incorporating Cathode-Ray Tube (CRT) Glass Waste. Buildings 2021, 11, 67. [Google Scholar] [CrossRef]
- Kim, T.-K.; Park, J.-S.; Kim, S.-H.; Jung, W.-T. Structural Behavior Evaluation of Reinforced Concrete Using the Fiber-Reinforced Polymer Strengthening Method. Polymers 2021, 13, 780. [Google Scholar] [CrossRef]
- Aghdasi, P.; Ostertag, C.P. Tensile fracture characteristics of Green Ultra-High Performance Fiber-Reinforced Concrete (G-UHP-FRC) with longitudinal steel reinforcement. Cem. Concr. Compos. 2020, 114, 103749. [Google Scholar] [CrossRef]
- Haroon, M.; Moon, J.S.; Kim, C. Performance of Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Strips. Materials 2021, 14, 5866. [Google Scholar] [CrossRef]
- Thamrin, R.; Zaidir, Z.; Iwanda, D. Ductility Estimation for Flexural Concrete Beams Longitudinally Reinforced with Hybrid FRP–Steel Bars. Polymers 2022, 14, 1017. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Li, Z.; Lou, T. Numerical Study of Using FRP and Steel Rebars in Simply Supported Prestressed Concrete Beams with External FRP Tendons. Polymers 2020, 12, 2773. [Google Scholar] [CrossRef]
- Jabr, A.; El-Ragaby, A.; Ghrib, F. Effect of the Fiber Type and Axial Stiffness of FRCM on the Flexural Strengthening of RC Beams. Fibers 2017, 5, 2. [Google Scholar] [CrossRef]
- Foraboschi, P. Strengthening of Reinforced Concrete Beams Subjected to Concentrated Loads Using Externally Bonded Fiber Composite Materials. Materials 2022, 15, 2328. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.-H.; Lin, J.-X.; Li, L.-J.; Guo, Y.-C.; Zeng, J.-J.; Xie, Z.-H.; Wei, F.-F.; Li, M. Experimental study on flexural behavior of concrete beam reinforced with GFRP and steel-fiber composite bars. J. Build. Eng. 2021, 43, 103087. [Google Scholar] [CrossRef]
- Goonewardena, J.; Ghabraie, K.; Subhani, M. Flexural Performance of FRP-Reinforced Geopolymer Concrete Beam. J. Compos. Sci. 2020, 4, 187. [Google Scholar] [CrossRef]
- Chen, H.-J.; Chen, C.-C.; Lin, H.-S.; Lin, S.-K.; Tang, C.-W. Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Concrete Beams after Exposure to High Temperatures. Materials 2021, 14, 5400. [Google Scholar] [CrossRef]
- Ďubek, M.; Makýš, P.; Petro, M.; Ellingerová, H.; Antošová, N. The Development of Controlled Orientation of Fibres in SFRC. Materials 2021, 14, 4432. [Google Scholar] [CrossRef]
- Koteš, P.; Vavruš, M.; Jošt, J.; Prokop, J. Strengthening of Concrete Column by Using the Wrapper Layer of Fibre Reinforced Concrete. Materials 2020, 13, 5432. [Google Scholar] [CrossRef]
- Valcuende, M.; Lliso-Ferrando, J.R.; Roig-Flores, M.; Gandía-Romero, J.M. Porous Structure of Ultra-High-Performance Fibre-Reinforced Concretes. Materials 2021, 14, 1637. [Google Scholar] [CrossRef]
- Kufel, A.; Para, S.; Kuciel, S. Basalt/Glass Fiber Polypropylene Hybrid Composites: Mechanical Properties at Different Temperatures and under Cyclic Loading and Micromechanical Modelling. Materials 2021, 14, 5574. [Google Scholar] [CrossRef] [PubMed]
- Afroz, M.; Venkatesan, S.; Patnaikuni, I. Effects of hybrid fibers on the development of high-volume fly ash cement composite. Constr. Build. Mater. 2019, 215, 984–997. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, Y.; Wang, J.; Jiao, M.; Ling, Y. Fracture Models and Effect of Fibers on Fracture Properties of Cementitious Composites—A Review. Materials 2020, 13, 5495. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Fan, J.; Chen, H.; Deng, L. A novel fractal solution for permeability and Kozeny-Carman constant of fibrous porous media made up of solid particles and porous fibers. Powder Technol. 2019, 49, 92–98. [Google Scholar] [CrossRef]
- Kumar, D.; Rex, L.K.; Sethuraman, V.S.; Gokulnath, V.; Saravanan, B. High performance glass fiber reinforced concrete. Mater. Today Proc. 2020, 33, 784–788. [Google Scholar] [CrossRef]
- Yuan, Z.; Jia, Y. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study. Constr. Build. Mater. 2021, 266, 121048. [Google Scholar] [CrossRef]
- Gao, D.; Huang, Y.; Yuan, J.; Gu, Z. Probability distribution of bond efficiency of steel fiber in tensile zone of reinforced concrete beams. J. Build. Eng. 2021, 43, 102550. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Gao, S. Study on Axial Compression Behavior of Concrete Short Columns Confined by Flax/Glass Fiber Hybrid-Reinforced Epoxy Resin Composites. Polymers 2022, 14, 517. [Google Scholar] [CrossRef]
- Rashedi, A.; Marzouki, R.; Raza, A.; Ali, K.; Olaiya, N.G.; Kalimuthu, M. Glass FRP-Reinforced Geopolymer Based Columns Comprising Hybrid Fibres: Testing and FEA Modelling. Polymers 2022, 14, 324. [Google Scholar] [CrossRef]
- Liu, S.; Ding, X.; Li, X.; Liu, Y.; Zhao, S. Behavior of Rectangular-Sectional Steel Tubular Columns Filled with High-Strength Steel Fiber Reinforced Concrete Under Axial Compression. Materials 2019, 12, 2716. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, I.; Iqbal, M.; Abbas, A.; Badrashi, Y.I.; Jamal, A.; Ullah, S.; Yosri, A.M.; Hamad, M. Enhancement of Confinement in Scaled RC Columns Using Steel Fibers Extracted from Scrap Tyres. Materials 2022, 15, 3219. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.; Khairallah, F.; Mamdouh, H.; Kamal, M. Structural behaviour of self-compacting concrete columns reinforced by steel and glass fibre-reinforced polymer rebars under eccentric loads. Eng. Struct. 2019, 188, 717–728. [Google Scholar] [CrossRef]
- Belyakov, N.; Smirnova, O.; Alekseev, A.; Tan, H. Numerical Simulation of the Mechanical Behavior of Fiber-Reinforced Cement Composites Subjected Dynamic Loading. Appl. Sci. 2021, 11, 1112. [Google Scholar] [CrossRef]
- Krassowska, J.; Kosior-Kazberuk, M. The Effect of Steel and Basalt Fibers on the Shear Behavior of Double-Span Fiber Reinforced Concrete Beams. Materials 2021, 14, 6090. [Google Scholar] [CrossRef]
- Zhu, H.; Li, C.; Cheng, S.; Yuan, J. Flexural Performance of Concrete Beams Reinforced with Continuous FRP Bars and Discrete Steel Fibers under Cyclic Loads. Polymers 2022, 14, 1399. [Google Scholar] [CrossRef]
- Bae, B.-I.; Lee, M.-S.; Choi, C.-S.; Jung, H.-S.; Choi, H.-K. Evaluation of the Ultimate Strength of the Ultra-High-Performance Fiber-Reinforced Concrete Beams. Appl. Sci. 2021, 11, 2951. [Google Scholar] [CrossRef]
- Nematzadeh, M.; Fallah-Valukolaee, S. Experimental and analytical investigation on structural behavior of two-layer fiber-reinforced concrete beams reinforced with steel and GFRP rebars. Constr. Build. Mater. 2021, 273, 121933. [Google Scholar] [CrossRef]
- Aydın, E.; Boru, E.; Aydın, F. Effects of FRP bar type and fiber reinforced concrete on the flexural behavior of hybrid beams. Constr. Build. Mater. 2021, 279, 122407. [Google Scholar] [CrossRef]
- Al-Saawani, M.A.; Al-Negheimish, A.I.; El-Sayed, A.K.; Alhozaimy, A.M. Finite Element Modeling of Debonding Failures in FRP-Strengthened Concrete Beams Using Cohesive Zone Model. Polymers 2022, 14, 1889. [Google Scholar] [CrossRef]
- Ahmad, H.; Elnemr, A.; Ali, N.; Hussain, Q.; Chaiyasarn, K.; Joyklad, P. Finite Element Analysis of Glass Fiber-Reinforced Polymer-(GFRP) Reinforced Continuous Concrete Beams. Polymers 2021, 13, 4468. [Google Scholar] [CrossRef]
- Qureshi, J. A Review of Fibre Reinforced Polymer Structures. Fibers 2022, 10, 27. [Google Scholar] [CrossRef]
- Wahab, N.; Srinophakun, P.; Hussain, Q.; Chaimahawan, P. Performance of Concrete Confined with a Jute–Polyester Hybrid Fiber Reinforced Polymer Composite: A Novel Strengthening Technique. Fibers 2019, 7, 72. [Google Scholar] [CrossRef] [Green Version]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing Technologies of Carbon/Glass Fiber-Reinforced Polymer Composites and Their Properties: A Review. Polymers 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- Bywalski, C.; Drzazga, M.; Kamiński, M.; Kaźmierowski, M. A New Proposal for the Shear Strength Prediction of Beams Longitudinally Reinforced with Fiber-Reinforced Polymer Bars. Buildings 2020, 10, 86. [Google Scholar] [CrossRef]
- Naser, M.Z.; Hawileh, R.A.; Abdalla, J.A. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng. Struct. 2019, 198, 109542. [Google Scholar] [CrossRef]
- Kazemi, M.; Daneshfar, M.; Zandi, Y.; Sadighi Agdas, A.; Yousefieh, N.; Mohammadifar, L.; Rahmani, A.; Saberian, M.; Mamdouh, A.; Khadimallah, M.A.; et al. Effects of the Concrete Strength and FRP Reinforcement Type on the Non-Linear Behavior of Concrete Deep Beams. Sustainability 2022, 14, 4136. [Google Scholar] [CrossRef]
- Olczyk, N.; Błyszko, J.; Techman, M. Load-Bearing Capacity of Beams Reinforced with Composite Rebar in Regard to Existing Guidelines. Materials 2021, 14, 6116. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, J.; He, X.; Lyu, X.; Liu, H. Structural Design Calculation of Basalt Fiber Polymer-Modified RPC Beams Subjected to Four-Point Bending. Polymers 2021, 13, 3261. [Google Scholar] [CrossRef]
- Cai, J.; Sheng, Z.; Wang, X.; Fang, Y.; Pan, J. Effect of reinforcement configurations on the flexural behaviors of 3D printed fiber reinforced cementitious composite (FRCC) beams. J. Build. Eng. 2022, 46, 103773. [Google Scholar] [CrossRef]
- Xue, W.; Peng, F.; Zheng, Q. Design Equations for Flexural Capacity of Concrete Beams Reinforced with Glass Fiber–Reinforced Polymer Bars. J. Compos. Constr. 2016, 20, 04015069. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Efremenko, I.; Varavka, V.; Beskopylny, N.; Dotsenko, N. Modeling and Experimental Verification of the Performance of Polymer Composite Reinforcing Bars of Different Types in Concrete of Different Density. Polymers 2022, 14, 1756. [Google Scholar] [CrossRef] [PubMed]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Dotsenko, N. Enchainment of the Coefficient of Structural Quality of Elements in Compression and Bending by Combined Reinforcement of Concrete with Polymer Composite Bars and Dispersed Fiber. Polymers 2021, 13, 4347. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; Xian, G.; Li, F.; Li, C.; Hong, B. Hygrothermal resistance of pultruded carbon, glass and carbon/glass hybrid fiber reinforced epoxy composites. Constr. Build. Mater. 2022, 315, 125710. [Google Scholar] [CrossRef]
- Bazli, M.; Jafari, A.; Ashrafi, H.; Zhao, X.-L.; Bai, Y.; Singh Raman, R.K. Effects of UV radiation, moisture and elevated temperature on mechanical properties of GFRP pultruded profiles. Constr. Build. Mater. 2020, 231, 117137. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, C.; Hong, B.; Huang, X.; Xin, M.; Huang, S. Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: Effects of hybrid modes. Polym. Degrad. Stab. 2021, 193, 109723. [Google Scholar] [CrossRef]
- GOST 34028-2016 Reinforcing Rolled Products for Reinforced Concrete Constructions. Specifications. Available online: https://docs.cntd.ru/document/1200144936 (accessed on 11 May 2022).
- GOST 31938-2012 Fibre-Reinforced Polymer Bar for Concrete Reinforcement. General Specifications. Available online: Https://Docs.Cntd.Ru/Document/1200101115 (accessed on 11 May 2022).
- SP 63.13330.2018 Concrete and Reinforced Concrete Structures. General Provisions. Available online: https://docs.cntd.ru/document/554403082 (accessed on 11 May 2022).
- Design Guide of Concrete and Reinforced Concrete Structures without Prestressing (to SP 52-101-2003). Available online: https://docs.cntd.ru/document/1200039444 (accessed on 11 May 2022).
- GOST 10180-2012 Concretes. Methods for Strength Determination Using Reference Specimens. Available online: http://docs.cntd.ru/document/1200100908 (accessed on 11 May 2022).
- Stel’makh, S.A.; Shcherban, E.M.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Varavka, V. Quantitative and Qualitative Aspects of Composite Action of Concrete and Dispersion-Reinforcing Fiber. Polymers 2022, 14, 682. [Google Scholar] [CrossRef]
- Shcherban, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Varavka, V. Nanomodification of Lightweight Fiber Reinforced Concrete with Micro Silica and Its Influence on the Constructive Quality Coefficient. Materials 2021, 14, 7347. [Google Scholar] [CrossRef]
- Shcherban, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Shuyskiy, A. Improvement of Strength and Strain Characteristics of Lightweight Fiber Concrete by Electromagnetic Activation in a Vortex Layer Apparatus. Appl. Sci. 2022, 12, 104. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban, E.M.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Zherebtsov, Y. Development of High-Tech Self-Compacting Concrete Mixtures Based on Nano-Modifiers of Various Types. Materials 2022, 15, 2739. [Google Scholar] [CrossRef]
- Shcherban, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B. Influence of Mechanochemical Activation of Concrete Components on the Properties of Vibro-Centrifugated Heavy Concrete. Appl. Sci. 2021, 11, 10647. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D.; Varavka, V. Developing Environmentally Sustainable and Cost-Effective Geopolymer Concrete with Improved Characteristics. Sustainability 2021, 13, 13607. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Shcherban, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; El’shaeva, D. The Influence of Composition and Recipe Dosage on the Strength Characteristics of New Geopolymer Concrete with the Use of Stone Flour. Appl. Sci. 2022, 12, 613. [Google Scholar] [CrossRef]
- Shcherban, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B. Increasing the Corrosion Resistance and Durability of Geopolymer Concrete Structures of Agricultural Buildings Operating in Specific Conditions of Aggressive Environments of Livestock Buildings. Appl. Sci. 2022, 12, 1655. [Google Scholar] [CrossRef]
Density, g/cm3 | Tensile Strength, GPa | Elastic Modulus, GPa | Fiber Length, mm | Elongation, % |
---|---|---|---|---|
2.6 | 1.8 | 70 | 12 | 1.5 |
Characteristics | Steel A400 | Steel A600 | Steel A800 | Steel A1000 | GCR | BCR | |
---|---|---|---|---|---|---|---|
, MPa | 340 | 520 | 695 | 870 | 800 | 800 | |
, MPa | 340 | 470 | 500 | 500 | 300 | 300 | |
, MPa | 200 | 50 | 50 | ||||
, mm2 | Ø6 | 113.0 | |||||
Ø8 | 201.0 | ||||||
Ø10 | 314.0 | ||||||
1.7 | 2.6 | 3.48 | 4.35 | 16 | 16 |
Product Section Size, mm | Concrete Class | Product Length, mm | Reinforcement | Boundary Relative Height of the Compressed Zone, | Height of Compressed Zone x, m | Relative Height of the Compressed Zone ε | Ultimate Bending Moment M, kN × m | ||
---|---|---|---|---|---|---|---|---|---|
Type | Class | Diameter, mm | |||||||
400 × 400 | B30 | 3000 | steel | A400 | 6 | 0.5385 | 0 | 0 | 13.836 |
8 | 0.0044 | 0.0116 | 25.13 | ||||||
10 | 0.01 | 0.0264 | 39.457 | ||||||
steel | A600 | 6 | 0.459 | 0.0008 | 0.0022 | 21.272 | |||
8 | 0.0076 | 0.0199 | 38.453 | ||||||
10 | 0.0162 | 0.0426 | 60.092 | ||||||
steel | A800 | 6 | 0.4014 | 0.0032 | 0.0085 | 28.688 | |||
8 | 0.0122 | 0.0322 | 51.435 | ||||||
10 | 0.0238 | 0.0626 | 79.874 | ||||||
steel | A1000 | 6 | 0.3567 | 0.0062 | 0.0162 | 36.112 | |||
8 | 0.0174 | 0.0458 | 64.278 | ||||||
10 | 0.0319 | 0.0838 | 99.226 | ||||||
GCR | 800 × 50 | 6 | 0.1436 | 0.0083 | 0.0219 | 33.451 | |||
8 | 0.0187 | 0.0491 | 59.23 | ||||||
10 | 0.0319 | 0.0841 | 91.306 | ||||||
BCR | 800 × 50 | 6 | 0.1436 | 0.0083 | 0.0219 | 33.451 | |||
8 | 0.0187 | 0.0491 | 59.23 | ||||||
10 | 0.0319 | 0.0841 | 91.306 | ||||||
B40 | steel | A400 | 6 | 0.5385 | 0 | 0 | 13.836 | ||
8 | 0.0034 | 0.0089 | 25.145 | ||||||
10 | 0.0078 | 0.0204 | 39.535 | ||||||
steel | A600 | 6 | 0.459 | 0.0006 | 0.0017 | 21.272 | |||
8 | 0.0058 | 0.0154 | 38.497 | ||||||
10 | 0.0125 | 0.0329 | 60.294 | ||||||
steel | A800 | 6 | 0.4014 | 0.0025 | 0.0066 | 28.696 | |||
8 | 0.0094 | 0.0249 | 51.55 | ||||||
10 | 0.0184 | 0.0484 | 80.311 | ||||||
steel | A1000 | 6 | 0.3567 | 0.0048 | 0.0125 | 36.141 | |||
8 | 0.0134 | 0.0354 | 64.512 | ||||||
10 | 0.0246 | 0.0648 | 100.011 | ||||||
GCR | 800 × 50 | 6 | 0.1436 | 0.0064 | 0.0169 | 33.504 | |||
8 | 0.0144 | 0.0379 | 59.499 | ||||||
10 | 0.0247 | 0.065 | 92.095 | ||||||
BCR | 800 × 50 | 6 | 0.1436 | 0.0064 | 0.0169 | 33.504 | |||
8 | 0.0144 | 0.0379 | 59.499 | ||||||
10 | 0.0247 | 0.065 | 92.095 |
Product Section Size, mm | Concrete Class | Product Length, mm | Reinforcement | Boundary Relative Height of the Compressed Zone, | Height of Compressed Zone x, m | Relative Height of the Compressed Zone ε | Ultimate Bending Moment M, kN × m | ||
---|---|---|---|---|---|---|---|---|---|
Type | Class | Diameter, mm | |||||||
400 × 400 | B30 | 3000 | steel | A400 | 6 | 0.5385 | 0 | 0 | 21.523 |
8 | 0.0044 | 0.0076 | 38.795 | ||||||
10 | 0.01 | 0.0173 | 60.809 | ||||||
steel | A600 | 6 | 0.459 | 0.0008 | 0.0014 | 33.028 | |||
8 | 0.0076 | 0.0130 | 59.353 | ||||||
10 | 0.0162 | 0.0279 | 92.748 | ||||||
steel | A800 | 6 | 0.4014 | 0.0032 | 0.0056 | 44.4 | |||
8 | 0.0122 | 0.0211 | 79.368 | ||||||
10 | 0.0238 | 0.041 | 123.52 | ||||||
steel | A1000 | 6 | 0.3567 | 0.0062 | 0.0106 | 55.781 | |||
8 | 0.0174 | 0.03 | 99.245 | ||||||
10 | 0.0319 | 0.0549 | 153.862 | ||||||
GCR | 800 × 50 | 6 | 0.1436 | 0.0083 | 0.0143 | 51.537 | |||
8 | 0.0187 | 0.0322 | 91.384 | ||||||
10 | 0.0319 | 0.0551 | 141.546 | ||||||
BCR | 800 × 50 | 6 | 0.1436 | 0.0083 | 0.0143 | 51.537 | |||
8 | 0.0187 | 0.0322 | 91.384 | ||||||
10 | 0.0319 | 0.0551 | 141.546 | ||||||
B40 | steel | A400 | 6 | 0.5385 | 0 | 0 | 21.523 | ||
8 | 0.0034 | 0.0059 | 38.81 | ||||||
10 | 0.0078 | 0.0134 | 60.887 | ||||||
steel | A600 | 6 | 0.459 | 0.0006 | 0.0011 | 33.028 | |||
8 | 0.0058 | 0.0101 | 59.397 | ||||||
10 | 0.0125 | 0.0216 | 92.95 | ||||||
steel | A800 | 6 | 0.4014 | 0.0025 | 0.0043 | 44.408 | |||
8 | 0.0094 | 0.0163 | 79.484 | ||||||
10 | 0.0184 | 0.0317 | 123.957 | ||||||
steel | A1000 | 6 | 0.3567 | 0.0048 | 0.0082 | 55.810 | |||
8 | 0.0134 | 0.0232 | 99.479 | ||||||
10 | 0.0246 | 0.0424 | 154.647 | ||||||
GCR | 800 × 50 | 6 | 0.1436 | 0.0064 | 0.0111 | 51.591 | |||
8 | 0.0144 | 0.0249 | 91.653 | ||||||
10 | 0.0247 | 0.0426 | 142.335 | ||||||
BCR | 800 × 50 | 6 | 0.1436 | 0.0064 | 0.0111 | 51.591 | |||
8 | 0.0144 | 0.0249 | 91.653 | ||||||
10 | 0.0247 | 0.0426 | 142.335 |
Type of Concrete | Compressive Strength, MPa |
---|---|
Concrete B30 | 41.9 ± 2.3 |
Glass fiber-reinforced concrete B30 | 50.3 ± 1.8 |
Num. | Type and Class of Reinforcement | Amount | Cost in Conventional Units |
---|---|---|---|
1 | Steel A400 | 1 m | 32.0 |
2 | Steel A600 | 1 m | 35.2 |
3 | Steel A800 | 1 m | 37.5 |
4 | Steel A1000 | 1 m | 42.0 |
5 | GCR 800 × 50 | 1 m | 28.7 |
6 | BCR 800 × 50 | 1 m | 16.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meskhi, B.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Beskopylny, N.; Dotsenko, N. Theoretical and Experimental Substantiation of the Efficiency of Combined-Reinforced Glass Fiber Polymer Composite Concrete Elements in Bending. Polymers 2022, 14, 2324. https://doi.org/10.3390/polym14122324
Meskhi B, Beskopylny AN, Stel’makh SA, Shcherban’ EM, Mailyan LR, Beskopylny N, Dotsenko N. Theoretical and Experimental Substantiation of the Efficiency of Combined-Reinforced Glass Fiber Polymer Composite Concrete Elements in Bending. Polymers. 2022; 14(12):2324. https://doi.org/10.3390/polym14122324
Chicago/Turabian StyleMeskhi, Besarion, Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’, Levon R. Mailyan, Nikita Beskopylny, and Natal’ya Dotsenko. 2022. "Theoretical and Experimental Substantiation of the Efficiency of Combined-Reinforced Glass Fiber Polymer Composite Concrete Elements in Bending" Polymers 14, no. 12: 2324. https://doi.org/10.3390/polym14122324
APA StyleMeskhi, B., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Beskopylny, N., & Dotsenko, N. (2022). Theoretical and Experimental Substantiation of the Efficiency of Combined-Reinforced Glass Fiber Polymer Composite Concrete Elements in Bending. Polymers, 14(12), 2324. https://doi.org/10.3390/polym14122324