Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications
Abstract
:1. Introduction
2. Starch
3. Bioactive Compounds
4. Pharmaceutical Applications
5. Packaging Applications
6. Food Applications
7. Other Applications
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joye, I.J.; McClements, D.J. Biopolymer-Based Delivery Systems: Challenges and Opportunities. Curr. Top. Med. Chem. 2015, 16, 1026–1039. [Google Scholar] [CrossRef]
- Builders, P.F.; Arhewoh, M.I. Pharmaceutical applications of native starch in conventional drug delivery. Starch-Stärke 2016, 68, 864–873. [Google Scholar] [CrossRef]
- Ogunsona, E.; Ojogbo, E.; Mekonnen, T. Advanced Material Applications of Starch and Its Derivatives. Eur. Polym. J. 2018, 108, 570–581. [Google Scholar] [CrossRef]
- Thakur, R.; Pristijono, P.; Scarlett, C.J.; Bowyer, M.; Singh, S.P.; Vuong, Q.V. Starch-based films: Major factors affecting their properties. Int. J. Biol. Macromol. 2019, 132, 1079–1089. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Yan, X.; Cui, Y.; Han, M.; Wang, Y.; Wang, J.; Zhang, R.; Wang, X. Characterization and Release Kinetics Study of Active Packaging Films Based on Modified Starch and Red Cabbage Anthocyanin Extract. Polymers 2022, 14, 1214. [Google Scholar] [CrossRef]
- Xie, F.; Pollet, E.; Halley, P.J.; Avérous, L. Starch-Based Nano-Biocomposites. Prog. Polym. Sci. 2013, 38, 1590–1628. [Google Scholar] [CrossRef]
- Rodrigues, A.; Emeje, M. Recent applications of starch derivatives in nanodrug delivery. Carbohydr. Polym. 2012, 87, 987–994. [Google Scholar] [CrossRef]
- de Farias, P.M.; de Vasconcelos, L.B.; Ferreira, M.E.D.S.; Filho, E.G.A.; De Freitas, V.A.; Tapia-Blácido, D.R. Nopal cladode as a novel reinforcing and antioxidant agent for starch-based films: A comparison with lignin and propolis extract. Int. J. Biol. Macromol. 2021, 183, 614–626. [Google Scholar] [CrossRef]
- Araújo, J.M.S.; de Siqueira, A.C.P.; Blank, A.F.; Narain, N.; de Aquino Santana, L.C.L. A Cassava Starch–Chitosan Edible Coating Enriched with Lippia sidoides Cham. Essential Oil and Pomegranate Peel Extract for Preservation of Italian Tomatoes (Lycopersicon esculentum Mill.) Stored at Room Temperature. Food Bioprocess. Technol. 2018, 11, 1750–1760. [Google Scholar] [CrossRef]
- Dos Santos Caetano, K.; Almeida Lopes, N.; Haas Costa, T.M.; Brandelli, A.; Rodrigues, E.; Hickmann Flôres, S.; Cladera-Olivera, F. Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag. Shelf Life 2018, 16, 138–147. [Google Scholar] [CrossRef]
- Cunha, G.F.; Soares, J.C.; de Sousa, T.L.; Egea, M.B.; de Alencar, S.M.; Belisário, C.M.; Plácido, G.R. Cassava-Starch-Based Films Supplemented with Propolis Extract: Physical, Chemical, and Microstructure Characterization. Biointerface Res. Appl. Chem. 2021, 11, 12149–12158. [Google Scholar] [CrossRef]
- Rangaraj, V.M.; Rambabu, K.; Banat, F.; Mittal, V. Natural Antioxidants-Based Edible Active Food Packaging: An Overview of Current Advancements. Food Biosci. 2021, 43, 101251. [Google Scholar] [CrossRef]
- Torres, F.G.; Commeaux, S.; Troncoso, O.P. Starch-based biomaterials for wound-dressing applications. Starch-Stärke 2013, 65, 543–551. [Google Scholar] [CrossRef]
- Fan, Y.; Picchioni, F. Modification of Starch: A Review on the Application of “Green” Solvents and Controlled Functionali-zation. Carbohydr. Polym. 2020, 241, 116350. [Google Scholar] [CrossRef] [PubMed]
- Whistler, R.L.; Daniel, J.R. Starch. Kirk-Othmer Encycl. Chem. Technol. 2000, 22, 1–17. [Google Scholar]
- Faisal, M.; Kou, T.; Zhong, Y.; Blennow, A. High Amylose-Based Bio Composites: Structures, Functions and Applications. Polymers 2022, 14, 1235. [Google Scholar] [CrossRef] [PubMed]
- Tharanathan, R.N. Biodegradable films and composite coatings: Past, present and future. Trends Food Sci. Technol. 2003, 14, 71–78. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Oliveira, R.A.; Velasco, J.I.; Fakhouri, F.M. Methods of incorporating plant-derived bioactive compounds into films made with agro-based polymers for application as food packaging: A brief review. Polymers 2020, 12, 2518. [Google Scholar] [CrossRef]
- Buleon, A.; Trm, V.; Mrez, S. Recent Advances in Knowledge of Starch Structure. Starch-Stärke 1991, 43, 375–384. [Google Scholar]
- Imberty, A.; Perez, S. A revisit to the three-dimensional structure of B-type starch. Biopolymers 1988, 27, 1205–1221. [Google Scholar] [CrossRef]
- Pinto, C.D.C.; Sanches, E.A.; Clerici, M.T.P.S.; Pereira, M.T.; Campelo, P.H.; de Souza, S.M. X-ray diffraction and Rietveld characterization of radiation-induced physicochemical changes in Ariá (Goeppertia allouia) C-type starch. Food Hydrocoll. 2021, 117, 106682. [Google Scholar] [CrossRef]
- Cereda, M.; Sarmento, S.; Vilpoux, O. Effects of Extraction Methods on Yam (Dioscorea alata) Starch Characteristics. Starch-Stärke 2005, 57, 153–160. [Google Scholar] [CrossRef]
- Kringel, D.H.; El Halal, S.L.M.; Zavareze, E.D.R.; Dias, A.R.G. Methods for the Extraction of Roots, Tubers, Pulses, Pseudocereals, and Other Unconventional Starches Sources: A Review. Starch-Stärke 2020, 72, 1900234. [Google Scholar] [CrossRef]
- Tagliapietra, B.L.; Felisberto, M.H.F.; Sanches, E.A.; Campelo, P.H.; Clerici, M.T.P.S. Non-Conventional Starch Sources. Curr. Opin. Food Sci. 2021, 39, 93–102. [Google Scholar] [CrossRef]
- Ledezma, C.C.Q. Starch Interactions with Native and Added Food Components; Elsevier: Amsterdam, The Netherlands, 2018; pp. 769–801. [Google Scholar] [CrossRef]
- Carvalho, A.P.M.G.; Barros, D.R.; da Silva, L.S.; Sanches, E.A.; Pinto, C.D.C.; de Souza, S.M.; Clerici, M.T.P.S.; Rodrigues, S.; Fernandes, F.A.N.; Campelo, P.H. Dielectric barrier atmospheric cold plasma applied to the modification of Ariá (Goeppertia allouia) starch: Effect of plasma generation voltage. Int. J. Biol. Macromol. 2021, 182, 1618–1627. [Google Scholar] [CrossRef] [PubMed]
- Ashogbon, A.O. The Recent Development in the Syntheses, Properties, and Applications of Triple Modification of Various Starches. Starch-Stärke 2020, 73, 2000125. [Google Scholar] [CrossRef]
- Grgić, I.; Ačkar, Đ.; Barišić, V.; Vlainić, M.; Knežević, N.; Medverec Knežević, Z. Nonthermal Methods for Starch Modifica-tion—A Review. J. Food Process. Preserv. 2019, 43, e14242. [Google Scholar] [CrossRef]
- Masina, N.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Govender, M.; Indermun, S.; Pillay, V. A Review of the Chemical Mod-ification Techniques of Starch. Carbohydr. Polym. 2017, 157, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Ariffin, F.; Bhat, R.; Karim, A.A. Progress in starch modification in the last decade. Food Hydrocoll. 2011, 26, 398–404. [Google Scholar] [CrossRef]
- Dewi, A.M.P.; Santoso, U.; Pranoto, Y.; Marseno, D.W. Dual Modification of Sago Starch via Heat Moisture Treatment and Octenyl Succinylation to Improve Starch Hydrophobicity. Polymers 2022, 14, 1086. [Google Scholar] [CrossRef]
- Pech-Cohuo, S.C.; Martín-López, H.; Uribe-Calderón, J.; González-Canché, N.G.; Salgado-Tránsito, I.; May-Pat, A.; Cuevas-Bernardino, J.C.; Ayora-Talavera, T.; Cervantes-Uc, J.M.; Pacheco, N. Physicochemical, Mechanical, and Structural Properties of Bio-Active Films Based on Biological-Chemical Chitosan, a Novel Ramon (Brosimum alicastrum) Starch, and Quercetin. Polymers 2022, 14, 1346. [Google Scholar] [CrossRef]
- da Silva, L.R.; Velasco, J.I.; Fakhouri, F.M. Bioactive Films Based on Starch from White, Red, and Black Rice to Food Application. Polymers 2022, 14, 835. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, G.D.M.; Filgueiras, C.T.; Garcia, V.A.D.S.; De Carvalho, R.A.; Velasco, J.I.; Fakhouri, F.M. Antimicrobial Activity and GC-MS Profile of Copaiba Oil for Incorporation into Xanthosoma mafaffa Schott Starch-Based Films. Polymers 2020, 12, 2883. [Google Scholar] [CrossRef] [PubMed]
- Aliabadi, M.; Chee, B.S.; Matos, M.; Cortese, Y.J.; Nugent, M.J.D.; De Lima, T.A.M.; Magalhães, W.L.E.; De Lima, G.G. Yerba Mate Extract in Microfibrillated Cellulose and Corn Starch Films as a Potential Wound Healing Bandage. Polymers 2020, 12, 2807. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Du, C.; Zhao, N.; Jiang, W.; Yu, X.; Du, S.-K. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem. 2021, 369, 130895. [Google Scholar] [CrossRef]
- Mudgil, P.; Aldhaheri, F.; Hamdi, M.; Punia, S.; Maqsood, S. Fortification of Chami (traditional soft cheese) with probiotic-loaded protein and starch microparticles: Characterization, bioactive properties, and storage stability. LWT 2022, 158, 113036. [Google Scholar] [CrossRef]
- Jamroży, M.; Głąb, M.; Kudłacik-Kramarczyk, S.; Drabczyk, A.; Gajda, P.; Tyliszczak, B. The Impact of the Matricaria chamomilla L. Extract, Starch Solution and the Photoinitiator on Physiochemical Properties of Acrylic Hydrogels. Materials 2022, 15, 2837. [Google Scholar] [CrossRef]
- Wang, P.; Luo, Z.-G.; Xiao, Z.-G. Preparation, physicochemical characterization and in vitro release behavior of resveratrol-loaded oxidized gellan gum/resistant starch hydrogel beads. Carbohydr. Polym. 2021, 260, 117794. [Google Scholar] [CrossRef]
- Elvira, C.; Mano, J.F.; San, J.; An, R.; Reis, R.L. Starch-Based Biodegradable Hydrogels with Potential Biomedical Applications as Drug Delivery Systems. Biomaterials 2002, 23, 1955–1966. [Google Scholar] [CrossRef]
- Mun, S.; Kim, Y.-R.; McClements, D.J. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chem. 2014, 173, 454–461. [Google Scholar] [CrossRef]
- Xiao, C. Current advances of chemical and physical starch-based hydrogels. Starch-Stärke 2012, 65, 82–88. [Google Scholar] [CrossRef]
- Leites Luchese, C.; Fernando, L.; Brum, W.; Piovesana, A.; Caetano, K.; Flôres, S.H. Bioactive Compounds Incorporation into the Production of Functional Biodegradable Films—A Review. Polym. Renew. Resour. 2017, 8, 151–176. [Google Scholar] [CrossRef]
- Petrovska, B.B. Historical Review of Medicinal Plants’ Usage. Pharmacogn. Rev. 2012, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive compounds in foods: Their role in the prevention of cardiovascular disease and cancer. Am. J. Med. 2002, 113, 71–88. [Google Scholar] [CrossRef]
- Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautiyal, A.R. Antimicrobial Resistance and the Alternative Re-sources with Special Emphasis on Plant-Based Antimicrobials—A Review. Plants 2017, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.A. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. Front. Plant Sci. 2019, 10, 881. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Fang, C.; Fernie, A.R.; Luo, J. Exploring the Diversity of Plant Metabolism. Trends Plant Sci. 2018, 24, 83–98. [Google Scholar] [CrossRef]
- Rhodes, M.J.C. Mini-Review Physiological Roles for Secondary Metabolites in Plants: Some Progress, Many Outstanding Problems. Plant Mol. Biol. 1994, 24, 1–20. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Kumar, U.S.U.; Khalil, H.A. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Mahcene, Z.; Khelil, A.; Hasni, S.; Akman, P.K.; Bozkurt, F.; Birech, K.; Goudjil, M.B.; Tornuk, F. Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. Int. J. Biol. Macromol. 2019, 145, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Brito, T.; Carrajola, J.; Gonçalves, E.; Martelli-Tosi, M.; Ferreira, M. Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Res. Int. 2019, 121, 412–421. [Google Scholar] [CrossRef] [PubMed]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta BBA Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef]
- Alencar Pamphile, J.; Costa, A.T.; Rosseto, P.; Polonio, J.C.; Pereira, J.O.; Azevedo, J.L. Aplicações biotecnológicas de metabólitos secundários extraídos de fungos endofíticos: O caso do Colletotrichum sp. Biotechnological applications of sec-ondary metabolites extracted from endophytic fungi: The case of Colletotrichum Sp. Rev. Uningá 2017, 53, 113–119. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Panyoyai, N.; Shanks, R.; Kasapis, S. Tocopheryl acetate release from microcapsules of waxy maize starch. Carbohydr. Polym. 2017, 167, 27–35. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Hong, M.-G.; Park, S.-H.; Lee, B.-H.; Yoo, S.-H. Biocatalytic Fabrication of α-Glucan-Coated Porous Starch Granules by Amylolytic and Glucan-Synthesizing Enzymes as a Target-Specific Delivery Carrier. Biomacromolecules 2019, 20, 4143–4149. [Google Scholar] [CrossRef]
- Athira, G.K.; Jyothi, A.N.; Vishnu, V.R. Water Soluble Octenyl Succinylated Cassava Starch-Curcumin Nanoformulation With Enhanced Bioavailability and Anticancer Potential. Starch-Stärke 2018, 70, 1700178. [Google Scholar] [CrossRef]
- Luo, K.; Adra, H.J.; Kim, Y.-R. Preparation of starch-based drug delivery system through the self-assembly of short chain glucans and control of its release property. Carbohydr. Polym. 2020, 243, 116385. [Google Scholar] [CrossRef]
- Lu, X.; Li, C.; Huang, Q. Combining in vitro digestion model with cell culture model: Assessment of encapsulation and delivery of curcumin in milled starch particle stabilized Pickering emulsions. Int. J. Biol. Macromol. 2019, 139, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, E.W.; Pavoni, J.M.F.; Luchese, C.L.; Faccin, D.J.L.; Tessaro, I.C. Influence of turmeric incorporation on physicochemical, antimicrobial and mechanical properties of the cornstarch and chitosan films. Int. J. Biol. Macromol. 2020, 148, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Oliyaei, N.; Moosavi-Nasab, M.; Tamaddon, A.M.; Tanideh, N. Antidiabetic effect of fucoxanthin extracted from Sargassum angustifolium on streptozotocin-nicotinamide-induced type 2 diabetic mice. Food Sci. Nutr. 2021, 9, 3521–3529. [Google Scholar] [CrossRef]
- Costa, N.N.; Lopes, L.D.F.; Ferreira, D.F.; de Prado, E.M.L.; Severi, J.A.; Resende, J.A.; Careta, F.D.P.; Ferreira, M.C.P.; Carreira, L.G.; de Souza, S.O.L.; et al. Polymeric films containing pomegranate peel extract based on PVA/starch/PAA blends for use as wound dressing: In vitro analysis and physicochemical evaluation. Mater. Sci. Eng. C 2020, 109, 110643. [Google Scholar] [CrossRef] [PubMed]
- Garcia, V.A.D.S.; Borges, J.G.; Mazalli, M.R.; Lapa-Guimarães, J.D.G.; Vanin, F.M.; De Carvalho, R.A. Gelatin and pregelatinized starch orally disintegrating films: Properties and stability of vitamin C. J. Appl. Polym. Sci. 2017, 134, 1–9. [Google Scholar] [CrossRef]
- Garcia, V.A.D.S.; Borges, J.G.; Maciel, V.; Mazalli, M.R.; Lapa-Guimaraes, J.D.G.; Vanin, F.M.; de Carvalho, R.A. Gelatin/starch orally disintegrating films as a promising system for vitamin C delivery. Food Hydrocoll. 2018, 79, 127–135. [Google Scholar] [CrossRef]
- Guerra, A.P.; Bitencourt Cervi, C.M.; Dos, V.A.; Garcia, S.; da Silva, C. Incorporation of active compounds from mango peel (Mangifera indica L. Cv. “tommy atkins”) into corn starch-based oral disintegrating films. Lat. Am. Appl. Res. 2019, 49, 93–97. [Google Scholar] [CrossRef]
- Bodini, R.B.; Pugine, S.M.P.; de Melo, M.P.; de Carvalho, R.A. Antioxidant and anti-inflammatory properties of orally disintegrating films based on starch and hydroxypropyl methylcellulose incorporated with Cordia verbenacea (erva baleeira) extract. Int. J. Biol. Macromol. 2020, 159, 714–724. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Grossmann, M.V.E.; Yamashita, F.; Pineda, E.A.G. Antimicrobial, Mechanical, and Barrier Properties of Cassava Starch−Chitosan Films Incorporated with Oregano Essential Oil. J. Agric. Food Chem. 2009, 57, 7499–7504. [Google Scholar] [CrossRef]
- De Araújo, G.K.P.; De Souza, S.J.; Da Silva, M.V.; Yamashita, F.; Gonçalves, O.H.; Leimann, F.V.; Shirai, M.A. Physical, antimicrobial and antioxidant properties of starch-based film containing ethanolic propolis extract. Int. J. Food Sci. Technol. 2015, 50, 2080–2087. [Google Scholar] [CrossRef]
- Taweechat, C.; Wongsooka, T.; Rawdkuen, S. Properties of Banana (Cavendish spp.) Starch Film Incorporated with Banana Peel Extract and Its Application. Molecules 2021, 26, 1406. [Google Scholar] [CrossRef] [PubMed]
- Boeira, C.P.; Alves, J.D.S.; Flores, D.C.B.; de Moura, M.R.; Melo, P.T.S.; da Rosa, C.S. Antioxidant and antimicrobial effect of an innovative active film containing corn stigma residue extract for refrigerated meat conservation. J. Food Process. Preserv. 2021, 45, e15721. [Google Scholar] [CrossRef]
- Malherbi, N.M.; Schmitz, A.C.; Grando, R.C.; Bilck, A.P.; Yamashita, F.; Tormen, L.; Fakhouri, F.M.; Velasco, J.I.; Bertan, L.C. Corn starch and gelatin-based films added with guabiroba pulp for application in food packaging. Food Packag. Shelf Life 2018, 19, 140–146. [Google Scholar] [CrossRef]
- Tongdeesoontorn, W.; Mauer, L.; Wongruong, S.; Sriburi, P.; Reungsang, A.; Rachtanapun, P. Antioxidant Films from Cassava Starch/Gelatin Biocomposite Fortified with Quercetin and TBHQ and Their Applications in Food Models. Polymers 2021, 13, 1117. [Google Scholar] [CrossRef] [PubMed]
- Peralta, J.; Bitencourt-Cervi, C.M.; Maciel, V.; Yoshida, C.M.; Carvalho, R.A. Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packag. Shelf Life 2018, 19, 47–55. [Google Scholar] [CrossRef]
- da Silva, T.B.V.; Moreira, T.F.M.; de Oliveira, A.; Bilck, A.P.; Gonçalves, O.H.; Ferreira, I.C.F.R.; Barros, L.; Barreiro, M.-F.; Yamashita, F.; Shirai, M.A.; et al. Araucaria angustifolia (Bertol.) Kuntze extract as a source of phenolic compounds in TPS/PBAT active films. Food Funct. 2019, 10, 7697–7706. [Google Scholar] [CrossRef]
- Müller, P.S.; Carpiné, D.; Yamashita, F.; Waszczynskyj, N. Influence of pinhão starch and natural extracts on the performance of thermoplastic cassava starch/PBAT extruded blown films as a technological approach for bio-based packaging material. J. Food Sci. 2020, 85, 2832–2842. [Google Scholar] [CrossRef]
- de Oliveira, T.V.; de Freitas, P.A.V.; Pola, C.C.; da Silva, J.O.R.; Diaz, L.D.A.; Ferreira, S.O.; Soares, N.D.F. Development and optimization of antimicrobial active films produced with a reinforced and compatibilized biodegradable polymers. Food Packag. Shelf Life 2020, 24, 100459. [Google Scholar] [CrossRef]
- Souza, P.N.D.C.; Tavares, D.G.; Souza, C.R.F.; Martinez, M.L.L.; Oliveira, W.P.; Guimarães, L.H.S.; Cardoso, P.G. Spray Drying of Coloring Extracts Produced by Fungi Isolated from Brazilian Caves. Braz. Arch. Biol. Technol. 2020, 63, 1–6. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Shahgol, M.; Estevinho, B.N.; Rocha, F. Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocoll. 2020, 108, 106029. [Google Scholar] [CrossRef]
- Tomsone, L.; Galoburda, R.; Kruma, Z.; Durrieu, V.; Cinkmanis, I. Microencapsulation of Horseradish (Armoracia rusticana L.) Juice Using Spray-Drying. Foods 2020, 9, 1332. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Bashari, M.; Akhtar, W.; Li, W.W.; Zhang, X. Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrason. Sonochem. 2014, 21, 1265–1274. [Google Scholar] [CrossRef] [PubMed]
- Doost, A.S.; Afghari, N.; Abbasi, H.; Nasrabadi, M.N.; Dewettinck, K.; Van der Meeren, P. Nano-lipid carriers stabilized by hydrophobically modified starch or sucrose stearate for the delivery of lutein as a nutraceutical beverage model. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 605, 125349. [Google Scholar] [CrossRef]
- Niu, Z.; Acevedo-Fani, A.; McDowell, A.; Barnett, A.; Loveday, S.M.; Singh, H. Nanoemulsion structure and food matrix determine the gastrointestinal fate and in vivo bioavailability of coenzyme Q10. J. Control. Release 2020, 327, 444–455. [Google Scholar] [CrossRef] [PubMed]
- Hasani, S.; Ojagh, S.M.; Ghorbani, M. Nanoencapsulation of lemon essential oil in Chitosan-Hicap system. Part 1: Study on its physical and structural characteristics. Int. J. Biol. Macromol. 2018, 115, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.S.; Santos, C.D.L.; Mar, J.M.; Kluczkovski, A.M.; Figueiredo, J.D.A.; Borges, S.V.; Bakry, A.M.; Sanches, E.A.; Campelo, P.H. Physicochemical properties of tucumã (Astrocaryum aculeatum) powders with different carbohydrate biopolymers. LWT 2018, 94, 79–86. [Google Scholar] [CrossRef]
- Ravichai, K.; Muangrat, R. Effect of different coating materials on freeze-drying encapsulation of bioactive compounds from fermented tea leaf wastewater. J. Food Process. Preserv. 2019, 43, e14145. [Google Scholar] [CrossRef]
- Zheng, B.; Xie, F.; Situ, W.; Chen, L.; Li, X. Controlled bioactive compound delivery systems based on double polysaccharide film-coated microparticles for liquid products and their release behaviors. J. Funct. Foods 2017, 37, 272–282. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Chen, L.; Xie, F.; Yu, L.; Li, B. Preparation and characterisation of octenyl succinate starch as a delivery carrier for bioactive food components. Food Chem. 2010, 126, 1218–1225. [Google Scholar] [CrossRef]
- Rodrigues, R.; Bilibio, D.; Plata-Oviedo, M.S.V.; Pereira, E.A.; Mitterer-Daltoé, M.L.; Perin, E.C.; Carpes, S.T. Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules 2021, 26, 6400. [Google Scholar] [CrossRef]
- Daudt, R.M.; Back, P.I.; Cardozo, N.; Marczak, L.D.F.; Külkamp-Guerreiro, I. Pinhão starch and coat extract as new natural cosmetic ingredients: Topical formulation stability and sensory analysis. Carbohydr. Polym. 2015, 134, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.P.; Silva, H.C.; Pimentel, I.C.; Poitevin, C.G.; Stuart, A.K.D.C.; Carpiné, D.; Jorge, L.M.D.M.; Jorge, R.M.M. Development of active cassava starch cellulose nanofiber-based films incorporated with natural antimicrobial tea tree essential oil. J. Appl. Polym. Sci. 2019, 137, 48726. [Google Scholar] [CrossRef]
- Wu, D.; Samanta, A.; Srivastava, R.K.; Hakkarainen, M. Starch-Derived Nanographene Oxide Paves the Way for Electrospinnable and Bioactive Starch Scaffolds for Bone Tissue Engineering. Biomacromolecules 2017, 18, 1582–1591. [Google Scholar] [CrossRef] [PubMed]
- Hornung, P.S.; Ávila, S.; Apea-Bah, F.B.; Liu, J.; Teixeira, G.L.; Ribani, R.H.; Beta, T. Sustainable Use of Ilex paraguariensis Waste in Improving Biodegradable Corn Starch Films’ Mechanical, Thermal and Bioactive Properties. J. Polym. Environ. 2020, 28, 1696–1709. [Google Scholar] [CrossRef]
- Pereira, J.F.; Lonni, A.A.S.G.; Mali, S. Development of biopolymeric films with addition of vitamin C and catuaba extract as natural antioxidants. Prep. Biochem. Biotechnol. 2021, 52, 1–10. [Google Scholar] [CrossRef]
- Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8. [Google Scholar] [CrossRef]
- Tran, T.T.D.; Tran, P.H.L. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug De-livery. Pharmaceutics 2019, 11, 290. [Google Scholar] [CrossRef]
- Pachuau, L. Recent developments in novel drug delivery systems for wound healing. Expert Opin. Drug Deliv. 2015, 12, 1895–1909. [Google Scholar] [CrossRef]
- Pacheco, M.S.; Barbieri, D.; da Silva, C.F.; de Moraes, M.A. A Review on Orally Disintegrating Films (ODFs) Made from Natural Polymers Such as Pullulan, Maltodextrin, Starch, and Others. Int. J. Biol. Macromol. 2021, 178, 504–513. [Google Scholar] [CrossRef]
- Luzi, F.; Torre, L.; Kenny, J.M.; Puglia, D. Bio- and Fossil-Based Polymeric Blends and Nanocomposites for Packaging: Structure–Property Relationship. Materials 2019, 12, 471. [Google Scholar] [CrossRef]
- Peelman, N.; Ragaert, P.; De Meulenaer, B.; Adons, D.; Peeters, R.; Cardon, L.; Van Impe, F.; Devlieghere, F. Application of bioplastics for food packaging. Trends Food Sci. Technol. 2013, 32, 128–141. [Google Scholar] [CrossRef]
- de Léis, C.M.; Nogueira, A.R.; Kulay, L.; Tadini, C. Environmental and energy analysis of biopolymer film based on cassava starch in Brazil. J. Clean. Prod. 2017, 143, 76–89. [Google Scholar] [CrossRef]
- Taherimehr, M.; YousefniaPasha, H.; Tabatabaeekoloor, R.; Pesaranhajiabbas, E. Trends and challenges of biopolymer-based nanocomposites in food packaging. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5321–5344. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.S.; Veloso, C.M. Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocoll. 2020, 112, 106374. [Google Scholar] [CrossRef]
- Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for Hydrogels in Cosmetics: Review. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef]
Nº | Starch Source | Starch Matrix | Bioactive Source | Bioactive | Properties | Application |
---|---|---|---|---|---|---|
[59] | Waxy maize starch | Microcapsules | Commercially obtained | Tocopheryl acetate | Controlled release | Pharmaceutical |
[60] | Porous corn starch | Coated granules | Commercially obtained | Crocin | Controlled release | Pharmaceutical |
[61] | Succinylated cassava starch | Nanoformulation | Commercially obtained | Curcumin | Anticancer | Pharmaceutical |
[62] | Waxy maize starch | Microparticles | Commercially obtained | Curcumin | Enhanced stability | Pharmaceutical |
[63] | Maize starch | Particle | Commercially obtained | Curcumin | Enhanced stability | Pharmaceutical |
[64] | Corn starch and chitosan | Film | Commercially obtained | Turmeric | Antimicrobial | Pharmaceutical |
[65] | Porous corn starch | Encapsulation | Sargassum angustifolium | Fucoxanthin | Antidiabetic effect | Pharmaceutical |
[66] | Blended polyvinyl alcohol, potato starch and polyacrylic acid | Film | Pomegranate peel extract | - | Wound healing | Pharmaceutical |
[67] | Gelatin and pregelatinized cassava starch | Film | Acerola (Malpighia emarginata) | Vitamin C | Enhanced stability | Pharmaceutical |
[68] | Gelatin and pregelatinized modified cassava starch | Film | Camu-camu (Myrciaria dubia) | Vitamin C | Enhanced stability | Pharmaceutical |
[69] | Corn starch | Film | Mangifera indica | Phenolic compounds | Antioxidant | Pharmaceutical |
[70] | Pregelatinized modified cassava Starch | Film | Cordia verbenacea | Flavonoids | Antioxidant and anti-inflammatory | Pharmaceutical |
[71] | Cassava starch and chitosan | Film | Oregano essential oil | - | antimicrobial | Packaging |
[72] | Cassava starch | Film | Propolis | Phenolic compounds | Antimicrobial and Antioxidant | Packaging |
[9] | Cassava starch–chitosan | Edible coating | Lippia sidoides essential oil and pomegranate peel extract | - | Food preservation | Packaging |
[10] | Cassava starch | Film | Oregano essential oil and pumpkin peel extract | - | Antioxidant and antimicrobial | Packaging |
[73] | Banana starch | Film | Banana peel extract | - | Food conservation | Packaging |
[74] | Corn starch | Film | Corn stigma extract | - | Antioxidant and antimicrobial | Packaging |
[75] | Corn starch and gelatin | Film | Guabiroba pulp (Campomanesia xanthocarpa) | - | antioxidant | Packaging |
[5] | Modified Starch | Film | Red cabbage | Anthocyanin | Light and oxygen barrier | Packaging |
[76] | Cassava Starch and gelatin | Film | - | Quercetin and tertiary butylhydroquinone | Antioxidant | Packaging |
[77] | Modified cassava starch | Film | Hibiscus extract | - | pH Indicator | Packaging |
[78] | Cassava starch and poly (butylene adipate co-terephthalate) | Film | Araucaria angustifolia | Phenolic compounds | Antioxidant | Packaging |
[79] | Pine nut and cassava starch | Thermoplastic | Rosemary and green tea aqueous extract | - | Modification of physico-chemical properties | Packaging |
[80] | Corn starch and polyvinyl alcohol | Film | Commercially obtained | Nisin Z | Antimicrobial | Packaging |
[11] | Cassava starch | Film | Propolis extract | - | antioxidant | Packaging |
[8] | Cassava starch | Film | Nopal cladode flour | - | Antioxidant | Packaging |
[33] | Rice starch | Film | Rice | Phenolic compounds | Antioxidant | Packaging |
[81] | Modified starch | Adjuvant for spray drying | Fungi isolated from Brazilian caves | Pigments | Enhanced stability | Food technology |
[82] | Blends of gum arabic, starch and maltodextrin | Microencapsulation | Commercially obtained | Vitamin A | Enhanced stability | Food technology |
[83] | Soluble starch | Core material in spray-drying | Horseradish juice | Phenolic compounds | Enhanced stability | Food technology |
[84] | Octenyl succinic anhydride modified starch | Nanoemulsion stabilizer | Commercially obtained | Curcumin | Enhanced stability | Food technology |
[85] | Octenyl succinic anhydride modified starch | Nanoemulsion stabilizer | Commercially obtained | Lutein | Enhanced stability | Food technology |
[86] | Octenyl succinic anhydride modified starch | Nanoemulsion stabilizer | Commercially obtained | Coenzyme Q10 | Enhanced stability | Food technology |
[87] | Chitosan and modified starch | Nanoencapsulation | Lemon essential oil | - | Enhanced stability | Food technology |
[88] | Modified starch | Encapsulation | Tucumã powder (Astrocaryum aculeatum) | - | Enhanced stability | Food technology |
[89] | Modified starch | Coating material in freeze-drying | Fermented tea leaf wastewater | Phenolic compounds | antioxidant activity | Food technology |
[90] | Chitosan and modified starch | Film-coated microparticles | Commercially obtained | Thymopoietin | Controlled release | Food technology |
[91] | Octenyl succinate starch | Delivery carrier | - | - | - | Food technology |
[92] | Starch biscuit | - | Propolis co-product extract | - | Antioxidant | Food technology |
[93] | Pine nut starch | Topical formulation | Pine nut skins | Phenolic compound | Antioxidant | Cosmetic |
[94] | Cassava starch and cellulose | Nanofiber film | Tea tree essential oil | - | Antimicrobial | Several applications |
[95] | Maize starch | Starch/nano graphene oxide nanofibers | - | - | - | Bone tissue engineering |
[96] | Corn starch | Film | Ilex paraguariensis | Phenolic compounds | Antioxidant | Several applications |
[97] | Cassava starch | Film | Catuaba extract (Trichilia catigua) | Vitamin C | Antioxidant | Cosmetic |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falcão, L.d.S.; Coelho, D.B.; Veggi, P.C.; Campelo, P.H.; Albuquerque, P.M.; de Moraes, M.A. Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications. Polymers 2022, 14, 2361. https://doi.org/10.3390/polym14122361
Falcão LdS, Coelho DB, Veggi PC, Campelo PH, Albuquerque PM, de Moraes MA. Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications. Polymers. 2022; 14(12):2361. https://doi.org/10.3390/polym14122361
Chicago/Turabian StyleFalcão, Lucas de Souza, Deborah Bento Coelho, Priscilla Carvalho Veggi, Pedro Henrique Campelo, Patrícia Melchionna Albuquerque, and Mariana Agostini de Moraes. 2022. "Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications" Polymers 14, no. 12: 2361. https://doi.org/10.3390/polym14122361
APA StyleFalcão, L. d. S., Coelho, D. B., Veggi, P. C., Campelo, P. H., Albuquerque, P. M., & de Moraes, M. A. (2022). Starch as a Matrix for Incorporation and Release of Bioactive Compounds: Fundamentals and Applications. Polymers, 14(12), 2361. https://doi.org/10.3390/polym14122361