Design and Evaluation of pH Sensitive PEG-Protamine Nanocomplex of Doxorubicin for Treatment of Breast Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of PEG Dicarboxylate
2.2.2. Synthesis of PEG-Protamine Complex
2.2.3. Preparation of Blank Nanoparticles
2.2.4. Preparation of Doxorubicin Loaded Nanoparticles
2.3. Characterization of Nanoparticles
2.3.1. Particle Size
2.3.2. Entrapment Efficiency
2.3.3. Percentage Yield of Nanoparticles
2.3.4. Morphology
2.3.5. Differential Scanning Calorimetery (DSC)
2.3.6. Fourier Transform Infrared (FTIR) Spectroscopy
2.3.7. X-ray Diffraction (XRD)
2.4. In Vitro Drug Release Studies
2.5. Statistical Analysis
3. Results
3.1. Synthesis of the PEG–Protamine Complex
3.2. Optimization of Formulation
3.3. Particle Size, Polydispersity Index, and Zeta Potential
3.4. Percentage Yield and Entrapment Efficiency
3.5. Scanning Electron Microscopy (SEM)
3.6. Fourier Transform Infrared Spectroscopy (FTIR)
3.7. X-ray Diffraction (XRD)
3.8. Differential Scanning Calorimetery (DSC)
3.9. In Vitro Release
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferlay, J.; Shin, H.R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of Worldwide Burden of Cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.; Rosso, K.; Nathanson, S.D. Pathogenesis, Prevention, Diagnosis and Treatment of Breast Cancer. World J. Clin. Oncol. 2014, 5, 283. [Google Scholar] [CrossRef] [PubMed]
- Karlin, N.J.; Wong, D.A. Mesenchymal Neoplasms and Primary Lymphomas of the Breast. Breast Compr. Manag. Benign Malig. Dis. 2018, 156–168.e6. [Google Scholar] [CrossRef]
- Saggioro, M.; D’Angelo, E.; Bisogno, G.; Agostini, M.; Pozzobon, M. Carcinoma and Sarcoma Microenvironment at a Glance: Where We Are. Front. Oncol. 2020, 10, 76. [Google Scholar] [CrossRef] [Green Version]
- Tomlinson-Hansen, S.; Khan, M.; Cassaro, S. Breast Ductal Carcinoma In Situ; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Johnson-Arbor, K.; Dubey, R. Doxorubicin; StatPearls Publishing: Treasure Island, FL, USA, 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Sritharan, S.; Sivalingam, N. A Comprehensive Review on Time-Tested Anticancer Drug Doxorubicin. Life Sci. 2021, 278, 119527. [Google Scholar] [CrossRef]
- Khan, S.A.; Akhtar, M.J. Structural Modification and Strategies for the Enhanced Doxorubicin Drug Delivery. Bioorg. Chem. 2022, 120, 105599. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Zhang, G.P.; Xiang, L.; Pang, H.W.; Xiong, K.; Lu, Y.; Li, J.M.; Dai, J.; Lin, S.; et al. Radiotherapy-Induced Enrichment of EGF-Modified Doxorubicin Nanoparticles Enhances the Therapeutic Outcome of Lung Cancer. Drug Deliv. 2022, 29, 588–599. [Google Scholar] [CrossRef]
- Singh, V.; Kesharwani, P. Dendrimer as a Promising Nanocarrier for the Delivery of Doxorubicin as an Anticancer Therapeutics. J. Biomater. Sci. 2021, 32, 1882–1909. [Google Scholar] [CrossRef]
- Khan, M.F.A.; UrRehman, A.; Howari, H.; Alhodaib, A.; Ullah, F.; Mustafa, Z.U.; Elaissari, A.; Ahmed, N. Hydrogel Containing Solid Lipid Nanoparticles Loaded with Argan Oil and Simvastatin: Preparation, In Vitro and Ex Vivo Assessment. Gels 2022, 8, 277. [Google Scholar] [CrossRef]
- Tzakos, A.G.; Briasoulis, E.; Thalhammer, T.; Jäger, W.; Apostolopoulos, V. Novel Oncology Therapeutics: Targeted Drug Delivery for Cancer. J. Drug Deliv. 2013, 2013, 918304. [Google Scholar] [CrossRef]
- Wu, D.; Si, M.; Xue, H.Y.; Wong, H.L. Nanomedicine Applications in the Treatment of Breast Cancer: Current State of the Art. Int. J. Nanomed. 2017, 12, 5879–5892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-Bound Formulation of Paclitaxel (Abraxane® ABI-007) in the Treatment of Breast Cancer. Int. J. Nanomed. 2009, 4, 99. [Google Scholar] [CrossRef] [Green Version]
- Bashir, K.; Khan, M.F.A.; Alhodaib, A.; Ahmed, N.; Naz, I.; Mirza, B.; Tipu, M.K.; Fatima, H. Design and Evaluation of PH-Sensitive Nanoformulation of Bergenin Isolated from Bergenia Ciliata. Polymers 2022, 14, 1639. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.H.; Mir, M.; Qian, L.; Baloch, M.; Khan, M.F.A.; Rehman, A.-U.; Ngowi, E.E.; Wu, D.D.; Ji, X.Y. Skin Cancer Biology and Barriers to Treatment: Recent Applications of Polymeric Micro/Nanostructures. J. Adv. Res. 2022, 36, 223–247. [Google Scholar] [CrossRef]
- Tareen, F.K.; Shah, K.U.; Ahmad, N.; Asim.ur.Rehman, N.; Shah, S.U.; Ullah, N. Proniosomes as a Carrier System for Transdermal Delivery of Clozapine. Drug Dev. Ind. Pharm. 2020, 46, 946–954. [Google Scholar] [CrossRef]
- Li, Y.; Leng, Q.; Zhang, Y.; Lin, S.; Wen, Q.; Lu, Y.; Xiong, K.; Shi, H.; Liu, Y.; Xiao, S.; et al. Anaerobic Bacteria Mediated ‘Smart Missile’ Targeting Tumor Hypoxic Area Enhances the Therapeutic Outcome of Lung Cancer. Chem. Eng. J. 2022, 438, 135566. [Google Scholar] [CrossRef]
- Xiao, S.; Shi, H.; Zhang, Y.; Fan, Y.; Wang, L.; Xiang, L.; Liu, Y.; Zhao, L.; Fu, S. Bacteria-Driven Hypoxia Targeting Delivery of Chemotherapeutic Drug Proving Outcome of Breast Cancer. J. Nanobiotechnol. 2021, 20, 178. [Google Scholar] [CrossRef]
- Gabizon, A.; Martin, F. Polyethylene Glycol-Coated (Pegylated) Liposomal Doxorubicin. Drugs 1997, 54, 15–21. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Aboutaleb, A.E.; Abdel-Aal, A.M.; Abdellatif, A.A.H.; Tawfeek, H.M.; Abdel-Rahman, S.I. Design and Optimization of PEGylated Silver Nanoparticles for Efficient Delivery of Doxorubicin to Cancer Cells. J. Drug Deliv. Sci. Technol. 2022, 71, 103347. [Google Scholar] [CrossRef]
- Day, C.M.; Sweetman, M.J.; Song, Y.; Plush, S.E.; Garg, S. Functionalized Mesoporous Silica Nanoparticles as Delivery Systems for Doxorubicin: Drug Loading and Release. Appl. Sci. 2021, 11, 6121. [Google Scholar] [CrossRef]
- Di Francesco, M.; Celia, C.; Cristiano, M.C.; D’Avanzo, N.; Ruozi, B.; Mircioiu, C.; Cosco, D.; Di Marzio, L.; Fresta, M. Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS Omega 2021, 6, 2973–2989. [Google Scholar] [CrossRef] [PubMed]
- Baghbanbashi, M.; Pazuki, G.; Khoee, S. One Pot Silica Nanoparticle Modification and Doxorubicin Encapsulation as PH-Responsive Nanocarriers, Applying PEG/Lysine Aqueous Two Phase System. J. Mol. Liq. 2022, 349, 118472. [Google Scholar] [CrossRef]
- Fishman, A.; Acton, A.; Lee-Ruff, E. A Simple Preparation of PEG-Carboxylates by Direct Oxidation. Synth. Commun. 2004, 34, 2309–2312. [Google Scholar] [CrossRef]
- Hombach, J.; Hoyer, H.; Bernkop-Schnürch, A. Thiolated Chitosans: Development and in Vitro Evaluation of an Oral Tobramycin Sulphate Delivery System. Eur. J. Pharm. Sci. 2008, 33, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Calvo, P.; Remunan-Lopez, C.; Vila-Jato, J.L.; Alonso, M.J. Novel Hydrophilic Chitosan-polyethylene Oxide Nanoparticles as Protein Carriers. J. Appl. Polym. Sci. 1997, 63, 125–132. [Google Scholar] [CrossRef]
- Park, J.; Hwang, S.R.; Choi, J.U.; Alam, F.; Byun, Y. Self-Assembled Nanocomplex of PEGylated Protamine and Heparin–Suramin Conjugate for Accumulation at the Tumor Site. Int. J. Pharm. 2018, 535, 38–46. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, X.; Ji, Z.; Zhu, L.; Ma, N.; Chen, D.; Jia, X.; Tang, J.; Cao, Y. DFT-Calculated IR Spectrum Amide I, II, and III Band Contributions of N-Methylacetamide Fine Components. ACS Omega 2020, 5, 8572–8578. [Google Scholar] [CrossRef] [Green Version]
- Abdulkareem, I.H. Aetio-Pathogenesis of Breast Cancer. Niger. Med. J. 2013, 54, 371. [Google Scholar] [CrossRef]
- Pedroso-Santana, S.; Fleitas-Salazar, N. Ionotropic Gelation Method in the Synthesis of Nanoparticles/Microparticles for Biomedical Purposes. Polym. Int. 2020, 69, 443–447. [Google Scholar] [CrossRef]
- Huang, Y.; Lapitsky, Y. On the Kinetics of Chitosan/Tripolyphosphate Micro- and Nanogel Aggregation and Their Effects on Particle Polydispersity. J. Colloid Interface Sci. 2017, 486, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; He, Q.; Wang, Y.Y.; Li, H.Y.; Ren, G.S. Advances in the Surgical Treatment of Breast Cancer. Chin. Clin. Oncol. 2016, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Baek, Y.; Yoo, H.J.; Lee, J.S.; Lee, H.G. Chitosan-Tripolyphosphate Nanoparticles Prepared by Ionic Gelation Improve the Antioxidant Activities of Astaxanthin in the In Vitro and In Vivo Model. Antioxidants 2022, 11, 479. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.P.; Quaresma, M.; Berrino, F.; Lutz, J.M.; De Angelis, R.; Capocaccia, R.; Baili, P.; Rachet, B.; Gatta, G.; Hakulinen, T.; et al. Cancer Survival in Five Continents: A Worldwide Population-Based Study (CONCORD). Lancet Oncol. 2008, 9, 730–756. [Google Scholar] [CrossRef]
- Sadat, A.; Joye, I.J. Peak Fitting Applied to Fourier Transform Infrared and Raman Spectroscopic Analysis of Proteins. Appl. Sci. 2020, 10, 5918. [Google Scholar] [CrossRef]
- Tremont, A.; Lu, J.; Cole, J.T. Endocrine Therapy for Early Breast Cancer: Updated Review. Ochsner J. 2017, 17, 405. [Google Scholar] [CrossRef]
- Awan, A.; Esfahani, K. Endocrine Therapy for Breast Cancer in the Primary Care Setting. Curr. Oncol. 2018, 25, 285–291. [Google Scholar] [CrossRef] [Green Version]
Formulation Name | Conc. of Polymer | Conc. of TPP | Volume of TPP Used | Stirring Speed | Stirring Time |
---|---|---|---|---|---|
F1 | 0.1% | 0.8% | 20 µL | 900 | 45 min |
F2 | 0.1% | 0.5% | 15 µL | 900 | 45 min |
F3 | 0.1% | 0.6% | 10 µL | 900 | 45 min |
F4 | 0.1% | 0.7% | 10 µL | 900 | 45 min |
F5 | 0.1% | 1.0% | 10 µL | 900 | 45 min |
F6 | 0.2% | 0.5% | 40 µL | 900 | 45 min |
Formulation Name | Solution A (µL) (Polymer) | Solution B (µL) (Drug + TPP) | Particle Size | Zeta Potential | PDI |
---|---|---|---|---|---|
F1 | 600 | 400 | 212.7 ± 2.87 | 15.2 ± 2.62 | 0.26 ± 0.02 |
F2 | 600 | 500 | 574.6 ± 16.1 | 2.98 ± 0.15 | 0.694 ± 0.12 |
F3 | 600 | 600 | 616.4 ± 12.8 | 1.51 ± 0.3 | 0.722 ± 0.09 |
F4 | 600 | 700 | 723 ± 9.3 | 7.34 ± 0.9 | 0.873 ± 0.18 |
F5 | 600 | 800 | 1015 ± 21.7 | 5.51 ± 1.1 | 0.90 ± 0.03 |
F6 | 600 | 900 | 1350 ± 33.5 | 2.91 ± 1.1 | 0.96 ± 0.02 |
F7 | 1200 | 400 | 290.3 ± 25.1 | 11.9 ± 3.3 | 0.454 ± 0.36 |
F8 | 1200 | 500 | 667.6 ± 32.3 | 5.68 ± 0.7 | 0.712 ± 0.2 |
F9 | 1200 | 600 | 721.1 ± 32.8 | 2.22 ± 0.1 | 0.812 ± 0.03 |
F10 | 1200 | 700 | 884.2 ± 44.1 | 5.34 ± 1.2 | 0.913 ± 0.01 |
F11 | 1200 | 800 | 1317.7 ± 27.9 | 6.71 ± 1.5 | 0.971 ± 0.01 |
F12 | 1200 | 900 | 1650.1 ± 55.7 | 3.93 ± 0.1 | 0.98 ± 0.02 |
Independent Variables | β Coefficient | p-Value |
---|---|---|
Solution A | 0.288 | 0.032 |
Solution B | 2.289 | <0.0001 |
Independent Variables | β Coefficient | p-Value |
---|---|---|
Solution A | 0.0001 | 0.257 |
Solution B | 0.001 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Khan, M.F.A.; Rahdar, A.; Hussain, S.; Tareen, F.K.; Salim, M.W.; Ajalli, N.; Amirzada, M.I.; Khan, A. Design and Evaluation of pH Sensitive PEG-Protamine Nanocomplex of Doxorubicin for Treatment of Breast Cancer. Polymers 2022, 14, 2403. https://doi.org/10.3390/polym14122403
Ahmad I, Khan MFA, Rahdar A, Hussain S, Tareen FK, Salim MW, Ajalli N, Amirzada MI, Khan A. Design and Evaluation of pH Sensitive PEG-Protamine Nanocomplex of Doxorubicin for Treatment of Breast Cancer. Polymers. 2022; 14(12):2403. https://doi.org/10.3390/polym14122403
Chicago/Turabian StyleAhmad, Ikhlaque, Muhammad Farhan Ali Khan, Abbas Rahdar, Saddam Hussain, Fahad Khan Tareen, Muhammad Waqas Salim, Narges Ajalli, Muhammad Imran Amirzada, and Ahmad Khan. 2022. "Design and Evaluation of pH Sensitive PEG-Protamine Nanocomplex of Doxorubicin for Treatment of Breast Cancer" Polymers 14, no. 12: 2403. https://doi.org/10.3390/polym14122403
APA StyleAhmad, I., Khan, M. F. A., Rahdar, A., Hussain, S., Tareen, F. K., Salim, M. W., Ajalli, N., Amirzada, M. I., & Khan, A. (2022). Design and Evaluation of pH Sensitive PEG-Protamine Nanocomplex of Doxorubicin for Treatment of Breast Cancer. Polymers, 14(12), 2403. https://doi.org/10.3390/polym14122403