Synthesis and Thermal Analysis of Non-Covalent PS-b-SC-b-P2VP Triblock Terpolymers via Polylactide Stereocomplexation
Abstract
:1. Introduction
2. Materials and Methods
2.1. For Anionic Polymerization
2.2. For Ring-Opening Polymerization
2.3. Instrumentation
2.4. Synthetic Procedures
2.5. Synthesis of Hydroxy-Terminated Polystyrene (PS-OH)
2.6. Synthesis of Hydroxy-Terminated Poly(2-vinylpyridine) (P2VP-OH)
2.7. Synthesis of PS-b-PDLA
2.8. Synthesis of P2VP-b-PLLA
2.9. Stereocomplex Formation (PS-b-SC-b-P2VP)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ikada, Y.; Tsuji, H. Biodegradable polyesters for medical and ecological applications. Macromol. Rapid. Comm. 2000, 21, 117–132. [Google Scholar] [CrossRef]
- Nair, L.S.; Laurencin, C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. [Google Scholar] [CrossRef]
- Bai, H.; Deng, S.; Bai, D.; Zhang, Q.; Fu, Q. Recent Advances in Processing of Stereocomplex-Type Polylactide. Macromol. Rapid. Commun. 2017, 38, 1700454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nofar, M.; Sacligil, D.; Carreau, P.J.; Kamal, M.R.; Heuzey, M.-C. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2018, 125, 307–360. [Google Scholar] [CrossRef]
- Wu, C.-S. Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic: Characterization and biodegradability. Polym. Degrad. Stab. 2009, 94, 1076–1084. [Google Scholar] [CrossRef]
- Bai, H.; Huang, C.; Xiu, H.; Zhang, Q.; Deng, H.; Wang, K.; Chen, F.; Fu, Q. Significantly Improving Oxygen Barrier Properties of Polylactide via Constructing Parallel-Aligned Shish-Kebab-Like Crystals with Well-Interlocked Boundaries. Biomacromolecules 2014, 15, 1507–1514. [Google Scholar] [CrossRef]
- Tawakkal, I.S.M.A.; Cran, M.J.; Miltz, J.; Bigger, S. A Review of Poly(Lactic Acid)-Based Materials for Antimicrobial Packaging. J. Food Sci. 2014, 79, R1477–R1490. [Google Scholar] [CrossRef]
- Drumright, R.E.; Gruber, P.R.; Henton, D.E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841–1846. [Google Scholar] [CrossRef]
- Jacobson, G.B.; Shinde, R.; Contag, C.; Zare, R.N. Sustained Release of Drugs Dispersed in Polymer Nanoparticles. Angew. Chem. Int. Ed. 2008, 47, 7880–7882. [Google Scholar] [CrossRef]
- Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front. Bioeng. Biotechnol. 2019, 7, 259. [Google Scholar] [CrossRef]
- Li, Y.; Qiang, Z.; Chen, X.; Ren, J. Understanding thermal decomposition kinetics of flame-retardant thermoset polylactic acid. RSC Adv. 2019, 9, 3128–3139. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Qiang, Z.; Zeng, C.; Ren, J. Multifunctional poly(lactic acid) copolymers with room temperature self-healing and rewritable shape memory properties via Diels-Alder reaction. Mater. Res. Express 2019, 6, 045701. [Google Scholar] [CrossRef]
- Armentano, I.; Bitinis, N.; Fortunati, E.; Mattioli, S.; Rescignano, N.; Verdejo, R.; Lopez-Manchado, M.; Kenny, J. Multifunctional nanostructured PLA materials for packaging and tissue engineering. Prog. Polym. Sci. 2013, 38, 1720–1747. [Google Scholar] [CrossRef] [Green Version]
- Jing, Y.; Quan, C.; Liu, B.; Jiang, Q.; Zhang, C. A Mini Review on the Functional Biomaterials Based on Poly(lactic acid) Stereocomplex. Polym. Rev. 2016, 56, 262–286. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Gao, C.; Yu, L.; Liu, H.; Chen, L. Development of self-reinforced polymer composites. Prog. Polym. Sci. 2012, 37, 767–780. [Google Scholar] [CrossRef]
- Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455–482. [Google Scholar] [CrossRef]
- Raquez, J.-M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504–1542. [Google Scholar] [CrossRef]
- Ye, S.; Lin, T.T.; Tjiu, W.W.; Wong, P.K.; He, C. Rubber toughening of poly(lactic acid): Effect of stereocomplex formation at the rubber-matrix interface. J. Appl. Polym. Sci. 2012, 128, 2541–2547. [Google Scholar] [CrossRef]
- Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Södergård, A.; Stolt, M. Properties of lactic acid based polymers and their correlation with composition. Prog. Polym. Sci. 2002, 27, 1123–1163. [Google Scholar] [CrossRef]
- Jamshidi, K.; Hyon, S.-H.; Ikada, Y. Thermal characterization of polylactides. Polymers 1988, 29, 2229–2234. [Google Scholar] [CrossRef]
- Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S.H. Stereocomplex formation between enantiomeric poly(lactides). Macromolecules 1987, 20, 904–906. [Google Scholar] [CrossRef]
- Wan, Z.-Q.; Longo, J.M.; Liang, L.-X.; Chen, H.-Y.; Hou, G.-J.; Yang, S.; Zhang, W.-P.; Coates, G.W.; Lu, X.-B. Comprehensive Understanding of Polyester Stereocomplexation. J. Am. Chem. Soc. 2019, 141, 14780–14787. [Google Scholar] [CrossRef]
- Zhang, J.; Sato, H.; Tsuji, H.; Noda, A.I.; Ozaki, Y. Infrared spectroscopic study of CH3 center dot center dot center dot O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 2005, 38, 1822–1828. [Google Scholar] [CrossRef]
- Fujiwara, T.; Mukose, T.; Yamaoka, T.; Yamane, H.; Sakurai, S.; Kimura, Y. Novel thermo-responsive formation of a hydrogel by stereo-complexation between PLLA-PEG-PLLA and PDLA-PEG-PDLA block copolymers. Macromol. Biosci. 2001, 1, 204–208. [Google Scholar] [CrossRef]
- Yang, L.; El Ghzaoui, A.; Li, S. In vitro degradation behavior of poly(lactide)–poly(ethylene glycol) block copolymer micelles in aqueous solution. Int. J. Pharm. 2010, 400, 96–103. [Google Scholar] [CrossRef]
- Chen, L.; Xie, Z.; Hu, J.; Chen, X.; Jing, X. Enantiomeric PLA–PEG block copolymers and their stereocomplex micelles used as rifampin delivery. J. Nanopart. Res. 2006, 9, 777–785. [Google Scholar] [CrossRef]
- Song, Y.; Wang, D.; Jiang, N.; Gan, Z. Role of PEG Segment in Stereocomplex Crystallization for PLLA/PDLA-b-PEG-b-PDLA Blends. ACS Sustain. Chem. Eng. 2015, 3, 1492–1500. [Google Scholar] [CrossRef]
- Shirahama, H.; Ichimaru, A.; Tsutsumi, C.; Nakayama, Y.; Yasuda, H. Characteristics of the biodegradability and physical properties of stereocomplexes between poly(L-lactide) and poly(D-lactide) copolymers. J. Polym. Sci. Part A Polym. Chem. 2004, 43, 438–454. [Google Scholar] [CrossRef]
- Wanamaker, C.L.; Bluemle, M.J.; Pitet, L.; O’Leary, L.E.; Tolman, W.B.; Hillmyer, M.A. Consequences of Polylactide Stereochemistry on the Properties of Polylactide-Polymenthide-Polylactide Thermoplastic Elastomers. Biomacromolecules 2009, 10, 2904–2911. [Google Scholar] [CrossRef]
- Li, Z.; Yuan, D.; Fan, X.; Tan, B.H.; He, C. Poly(ethylene glycol) Conjugated Poly(lactide)-Based Polyelectrolytes: Synthesis and Formation of Stable Self-Assemblies Induced by Stereocomplexation. Langmuir 2015, 31, 2321–2333. [Google Scholar] [CrossRef]
- Fan, X.; Wang, Z.; Yuan, D.; Sun, Y.; Li, Z.; He, C. Novel linear-dendritic-like amphiphilic copolymers: Synthesis and self-assembly characteristics. Polym. Chem. 2014, 5, 4069–4075. [Google Scholar] [CrossRef]
- Uehara, H.; Karaki, Y.; Wada, S.; Yamanobe, T. Stereo-Complex Crystallization of Poly(lactic acid)s in Block-Copolymer Phase Separation. ACS Appl. Mater. Interfaces 2010, 2, 2707–2710. [Google Scholar] [CrossRef]
- Schmidt, S.C.; Hillmyer, M.A. Synthesis and Characterization of Model Polyisoprene−Polylactide Diblock Copolymers. Macromolecules 1999, 32, 4794–4801. [Google Scholar] [CrossRef]
- Frick, E.M.; Hillmyer, M.A. Synthesis and characterization of polylactide-block-polyisoprene-block-polylactide triblock copolymers: New thermoplastic elastomers containing biodegradable segments. Macromol. Rapid. Comm. 2000, 21, 1317–1322. [Google Scholar] [CrossRef]
- He, X.; He, Y.; Hsiao, M.-S.; Harniman, R.L.; Pearce, S.; Winnik, M.A.; Manners, I. Complex and Hierarchical 2D Assemblies via Crystallization-Driven Self-Assembly of Poly(l-lactide) Homopolymers with Charged Termini. J. Am. Chem. Soc. 2017, 139, 9221–9228. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Azmi, A.S.; Kim, M.P.; Ali, F.B. Comparative Study of Poly(4-vinylpyridine) and Polylactic Acid-block-poly (2-vinylpyridine) Nanocomposites on Structural, Morphological and Electrochemical Properties. Sains Malays. 2017, 46, 1097–1102. [Google Scholar] [CrossRef]
- Ladelta, V.; Ntetsikas, K.; Zapsas, G.; Hadjichristidis, N. Non-Covalent PS–SC–PI Triblock Terpolymers via Polylactide Stereocomplexation: Synthesis and Thermal Properties. Macromolecules 2022, 55, 2832–2843. [Google Scholar] [CrossRef]
- Hadjichristidis, N.; Iatrou, H.; Pispas, S.; Pitsikalis, M. Anionic polymerization: High vacuum techniques. J. Polym. Sci. Pol. Chem. 2000, 38, 3211–3234. [Google Scholar] [CrossRef]
- Uhrig, D.; Mays, J.W. Experimental techniques in high-vacuum anionic polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 6179–6222. [Google Scholar] [CrossRef]
- Bhaumik, S.; Ntetsikas, K.; Hadjichristidis, N. Noncovalent Supramolecular Diblock Copolymers: Synthesis and Microphase Separation. Macromolecules 2020, 53, 6682–6689. [Google Scholar] [CrossRef]
- Quirk, R.P.; Ma, J.-J. Characterization of the functionalization reaction product of poly(styryl)lithium with ethylene oxide. J. Polym. Sci. Part A Polym. Chem. 1988, 26, 2031–2037. [Google Scholar] [CrossRef]
- Kowalski, A.; Libiszowski, J.; Biela, T.; Cypryk, M.; Duda, A.A.; Penczek, S. Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(II) Octoate. Polymerization of ε-Caprolactone and l,l-Lactide Co-initiated with Primary Amines. Macromolecules 2005, 38, 8170–8176. [Google Scholar] [CrossRef]
- Grijpma, D.W.; Pennings, A.J. Polymerization Temperature Effects on the Properties of L-Lactide and Epsilon-Caprolactone Copolymers. Polym. Bull. 1991, 25, 335–341. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Meierhaack, J. Polylactones, 22 Aba Triblock Copolymers of L-Lactide and Poly(Ethylene Glycol). Makromol. Chem. 1993, 194, 715–725. [Google Scholar] [CrossRef]
- Ryner, M.; Stridsberg, K.; Albertsson, A.-C.; von Schenck, H.; Svensson, M. Mechanism of Ring-Opening Polymerization of 1,5-Dioxepan-2-one and l-Lactide with Stannous 2-Ethylhexanoate. A Theoretical Study. Macromolecules 2001, 34, 3877–3881. [Google Scholar] [CrossRef]
- Ladelta, V.; Zapsas, G.; Abou-Hamad, E.; Gnanou, Y.; Hadjichristidis, N. Tetracrystalline Tetrablock Quarterpolymers: Four Different Crystallites under the Same Roof. Angew. Chem. Int. Ed. 2019, 58, 16267–16274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.; Chen, Z.; Yang, Y. Benign Fabrication of Fully Stereocomplex Polylactide with High Molecular Weights via a Thermally Induced Technique. ACS Omega 2018, 3, 7979–7984. [Google Scholar] [CrossRef] [PubMed]
- Ji, E.; Cummins, C.; Fleury, G. Precise Synthesis and Thin Film Self-Assembly of PLLA-b-PS Bottlebrush Block Copolymers. Molecules 2021, 26, 1412. [Google Scholar] [CrossRef]
- Michell, R.M.; Müller, A.J.; Spasova, M.; Dubois, P.; Burattini, S.; Greenland, B.W.; Hamley, I.W.; Hermida-Merino, D.; Cheval, N.; Fahmi, A. Crystallization and Stereocomplexation Behavior of Poly(D- and L-lactide)-b-Poly(N,N-dimethylamino-2-ethyl methacrylate) Block Copolymers. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1397–1409. [Google Scholar] [CrossRef] [Green Version]
- Cebe, P.; Hong, S.-D. Crystallization behaviour of poly(ether-ether-ketone). Polymer 1986, 27, 1183–1192. [Google Scholar] [CrossRef]
- Bassett, D.; Olley, R.; Alraheil, I. On crystallization phenomena in PEEK. Polymer 1988, 29, 1745–1754. [Google Scholar] [CrossRef]
- Lee, Y.; Porter, R.S.; Lin, J.S. On the double-melting behavior of poly(ether ether ketone). Macromolecules 1989, 22, 1756–1760. [Google Scholar] [CrossRef]
- Jonas, A.M.; Russell, T.P.; Yoon, D.Y. Synchrotron X-ray Scattering Studies of Crystallization of Poly(ether-ether-ketone) from the Glass and Structural Changes during Subsequent Heating-Cooling Processes. Macromolecules 1995, 28, 8491–8503. [Google Scholar] [CrossRef]
Entry | Sample | Conv c (%) | Mn (kg mol−1) | Đ d |
---|---|---|---|---|
1 | PS6.2-OH a | 100 | 6.20 d | 1.02 |
2 | P2VP5.5-OH a | 100 | 5.54 d | 1.03 |
3 | PS6.2-b-PDLA5.5 b | 97 | 5.49 e | 1.03 |
4 | P2VP5.5-b-PLLA5.6 b | 96 | 5.57 e | 1.08 |
5 | PS6.2-b-PDLA7.1 b | 98 | 7.06 e | 1.04 |
6 | P2VP5.5-b-PLLA7 b | 99 | 6.96 e | 1.04 |
7 | PS6.2-b-PDLA10.7 b | 99 | 10.7 e | 1.05 |
8 | P2VP5.5-b-PLLA11 b | 99 | 11.0 e | 1.07 |
Sample | Tg (°C) 1 | Tm (°C) 1 | ∆Hm (J/g) 1 | Xc (%) 2 |
---|---|---|---|---|
PS6.2-OH | 92.3 | - | - | Amorphous |
P2VP5.5-OH | 93.6 | - | - | Amorphous |
PS6.2-b-PDLA5.5 | - | 153.0 | 24.4 | 14.5 |
P2VP5.5-b-PLLA5.6 | 83.0 | 156.0 | 23.5 | 34.0 |
SCPLA5.5 | - | 220.3 | 36.1 | 33.0 |
PS6.2-b-PDLA7.1 | 54.2 | 154.0 | 25.5 | 37.3 |
P2VP5.5-b-PLLA7 | 58.9 | 152.6 | 27.7 | 39.6 |
SCPLA7 | - | 223.3 | 41.3 | 38.3 |
PS6.2-b-PDLA10.7 | 73.9 | 162.6 | 30.0 | 52.4 |
P2VP5.5-b-PLLA11 | 59.9 | 162.9 | 43.2 | 51.4 |
SCPLA11 | - | 231.1 | 39.9 | 39.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arkanji, A.; Ladelta, V.; Ntetsikas, K.; Hadjichristidis, N. Synthesis and Thermal Analysis of Non-Covalent PS-b-SC-b-P2VP Triblock Terpolymers via Polylactide Stereocomplexation. Polymers 2022, 14, 2431. https://doi.org/10.3390/polym14122431
Arkanji A, Ladelta V, Ntetsikas K, Hadjichristidis N. Synthesis and Thermal Analysis of Non-Covalent PS-b-SC-b-P2VP Triblock Terpolymers via Polylactide Stereocomplexation. Polymers. 2022; 14(12):2431. https://doi.org/10.3390/polym14122431
Chicago/Turabian StyleArkanji, Ameen, Viko Ladelta, Konstantinos Ntetsikas, and Nikos Hadjichristidis. 2022. "Synthesis and Thermal Analysis of Non-Covalent PS-b-SC-b-P2VP Triblock Terpolymers via Polylactide Stereocomplexation" Polymers 14, no. 12: 2431. https://doi.org/10.3390/polym14122431
APA StyleArkanji, A., Ladelta, V., Ntetsikas, K., & Hadjichristidis, N. (2022). Synthesis and Thermal Analysis of Non-Covalent PS-b-SC-b-P2VP Triblock Terpolymers via Polylactide Stereocomplexation. Polymers, 14(12), 2431. https://doi.org/10.3390/polym14122431