Antiseptic Polymer–Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Hydrogels
2.3. Loading of the Hydrogels with Disinfectants
2.4. UV-Spectroscopy
2.5. NMR Spectroscopy
2.6. Mechanical Tests
2.7. Release Studies
2.8. Antiviral Activity Tests
2.8.1. Virucidal Activity of CPC Solutions
2.8.2. Virucidal Activity of CPC Formulated into Gels
- (i)
- Washes from the surface of the gel: phosphate-buffered saline, pH 7.2 (450 μL), was applied dropwise onto pieces of CPC-containing gels, and placed in Petri dishes; after 5 s, the flowing liquid was collected and used for incubation with the virus (300 μL) and spectrophotometric measurement of the amount of CPC released from the gels as a result of the washing (residual volume, less than 150 µL). The virucidal activity of CPC washed off the surface of the gels was determined (as described above) 24 h (on day 1) and 168 h (on day 7) after the gels were prepared.
- (ii)
- Direct contact of the virus with the surface of CPC-containing gels: 150 µL of support medium containing the known amount of the virus was applied onto the surface of the gel for 5 s, after which the flowing liquid was collected and the titer of the virus, determined as described above (in order to establish changes in the titer caused by the contact with the surface of the CPC-containing gel).
3. Results and Discussion
3.1. Preparation and Characterization of Antiseptic Polymer Coatings
3.2. Kinetics of the Disinfectant Release
3.3. Reloading
3.4. Virucidal Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martellucci, C.A.; Flacco, M.E.; Cappadona, R.; Bravi, F.; Mantovani, L.; Manzoli, L. SARS-CoV-2 pandemic: An overview. Adv. Biol. Regul. 2020, 77, 100736. [Google Scholar] [CrossRef] [PubMed]
- Kunduru, K.R.; Kutner, N.; Nassar-Marjiya, E.; Shaheen-Mualim, M.; Rizik, L.; Farah, S. Disinfectants role in the prevention of spreading the COVID-19 and other infectious diseases: The need for functional polymers! Polym. Adv. Technol. 2022, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Worldometers. Coronavirus. Available online: https://www.worldometers.info/coronavirus/#countries (accessed on 24 May 2022).
- Stadnytskyi, V.; Anfinrud, P.; Bax, A. Breathing, speaking, coughing or sneezing: What drives transmission of SARS-CoV-2? J. Intern. Med. 2021, 290, 949–951. [Google Scholar] [CrossRef] [PubMed]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, E10. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of cor-onaviruses on inanimate surfaces and their inactivation with biocidalagents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Moriarty, L.F.; Plucinski, M.M.; Marston, B.J.; Kurbatova, E.V.; Knust, B.; Murray, E.L.; Pesik, N.; Rose, D.; Fitter, D.; Kobayashi, M.; et al. Public health responsesto COVID-19 outbreaks on cruise ships—worldwide, February–March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 347–352. [Google Scholar] [CrossRef]
- Kratzel, A.; Todt, D.; V’kovski, P.; Steiner, S.; Gultom, M.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg. Infect. Dis. 2020, 26, 1592–1595. [Google Scholar] [CrossRef]
- Leslie, R.A.; Zhou, S.S.; Macinga, D.R. Inactivation of SARS-CoV-2 by commercially available alcohol-based hand sanitizers. Am. J. Infec. Control 2021, 49, 401–402. [Google Scholar] [CrossRef]
- Basak, D.; Deb, S. Sensitivity of SARS-CoV-2 towards alcohols: Potential for alcohol-related toxicity in humans. Life 2021, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Hirose, R.; Bandou, R.; Ikegaya, H.; Watanabe, N.; Yoshida, T.; Daidoji, T.; Naito, Y.; Itoh, Y.; Nakaya, T. Disinfectant effectiveness against SARS-CoV-2 and influenza viruses present on human skin: Model-based evaluation. Clin. Microbiol. Infect. 2021, 27, 1042.e1–1042.e4. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, Y.; Wang, L.; Wu, X.; Fan, J.; Li, F.; Zeng, X.; Ge, Y.; Chi, Y.; Zhang, L.; et al. In vitro inactivation of SARS-CoV-2 by commonly used disinfection products and methods. Sci. Rep. 2021, 11, 2418. [Google Scholar] [CrossRef]
- Ogilvie, B.H.; Solis-Leal, A.; Lopez, J.B.; Poole, B.D.; Robinson, R.A.; Berges, B.K. Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J. Hosp. Infect. 2021, 108, 142–145. [Google Scholar] [CrossRef]
- Tamimi, A.H.; Carlino, S.; Gerba, C.P. Long-term efficacy of a self-disinfecting coating in an intensive care unit. Am. J. Infect. Control 2014, 42, 1178–1181. [Google Scholar] [CrossRef]
- Nabi, G.; Wang, Y.; Hao, Y.; Khan, S.; Wu, Y.; Li, D. Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife. Environ. Res. 2020, 188, 109916. [Google Scholar] [CrossRef]
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: Consideration of environmental implications. Environ. Sci. Technol. Lett. 2020, 7, 622–631. [Google Scholar] [CrossRef]
- Druvari, D.; Koromilas, N.D.; Lainioti, G.C.; Bokias, G.; Vasilopoulos, G.; Vantarakis, A.; Baras, I.; Dourala, N.; Kallitsis, J.K. Polymeric quaternary ammonium-containing coatings with potential dual contact-based and release-based antimicrobial activity. ACS Appl. Mater. Interfaces 2016, 8, 35593–35605. [Google Scholar] [CrossRef]
- Springthorpe, V.S.; Sattar, S.A. Chemical disinfection of virus-contaminated surfaces. Crit. Rev. Environ. Sci. Control 1990, 20, 169–229. [Google Scholar] [CrossRef]
- McDonnell, G.; Russell, A.D. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef] [Green Version]
- Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2000, 5, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Prince, D.L.; Prince, H.N.; Thraenhart, O.; Muchmore, E.; Bonder, E.; Pugh, J. Methodological approaches to disinfection of human hepatitis B virus. J. Clin. Microbiol. 1993, 31, 3296–3304. [Google Scholar] [CrossRef] [Green Version]
- Baker, N.; Williams, A.J.; Tropsha, A.; Ekins, S. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm. Res. 2020, 37, 104. [Google Scholar] [CrossRef] [PubMed]
- Munos-Basagoiti, J.; Perez-Zsolt, D.; Leon, R.; Blanc, V.; Raich-Regué, D.; Cano-Sarabia, M.; Trinité, B.; Pradenas, E.; Blanco, J.; Gispert, J.; et al. Mouthwashes with CPC reduce the infectivity of SARS-CoV-2 variants in vitro. J. Dental Res. 2021, 100, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Mezarina Mendoza, J.; Trelles Ubillús, B.P.; Salcedo Bolívar, G.T.; Castañeda Palacios, R.; Herrera Lopez, P.; Padilla Rodríguez, D.A.; Uchima Koecklin, K.H. Antiviral effect of mouthwashes against SARS-COV-2: A systematic review. Saudi Dent. J. 2022, 34, 167–193. [Google Scholar] [CrossRef]
- Wong, P.T.; Leroueil, P.R.; Smith, D.M.; Ciotti, S.; Bielinska, A.U.; Janczak, K.W.; Mullen, C.H.; Ii, J.V.G.; Taylor, E.M.; Passmore, C.; et al. Formulation, high throughput in vitro screening and in vivo functional characterization of nanoemulsion-based intranasal vaccine adjuvants. PLoS ONE 2015, 10, e0126120. [Google Scholar] [CrossRef] [Green Version]
- Martí, M.; Tuñón-Molina, A.; Aachmann, F.L.; Muramoto, Y.; Noda, T.; Takayama, K.; Serrano-Aroca, Á. Protective face mask filter capable of inactivating SARS-CoV-2, and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis. Polymers 2021, 13, 207. [Google Scholar] [CrossRef]
- Tuñón-Molina, A.; Martí, M.; Muramoto, Y.; Noda, T.; Takayama, K.; Serrano-Aroca, Á. Antimicrobial face shield: Next generation of facial protective equipment against SARS-CoV-2 and multidrug-resistant bacteria. Int. J. Mol. Sci. 2021, 22, 9518. [Google Scholar] [CrossRef]
- Tiller, J.C.; Sprich, C.; Hartmann, L. Amphiphilic conetworks as regenerative controlled releasing antimicrobial coatings. J. Control. Release 2005, 103, 355–367. [Google Scholar] [CrossRef]
- Pavlukhina, S.; Lu, Y.; Patimetha, A.; Libera, M.; Sukhishvili, S. Polymer multilayers with pH-triggered release of antibacterial agents. Biomacromolecules 2010, 11, 3448–3456. [Google Scholar] [CrossRef]
- Liakos, I.; Rizzello, L.; Bayer, I.S.; Pompa, P.P.; Cingolani, R.; Athanassiou, A. Controlled antiseptic release by alginate polymer films and beads. Carbohydr. Polym. 2013, 92, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Al-Sayah, M.H.; Ahmed, A.; El-Kadri, O.M. Triazine-based porous organic polymers for reversible capture of iodine and utilization in antibacterial application. Sci. Rep. 2022, 12, 2638. [Google Scholar] [CrossRef] [PubMed]
- Kozhunova, E.Y.; Komarova, G.A.; Vyshivannaya, O.V.; Nasimova, I.R.; Kuvarina, A.E.; Sadykova, V.S. Antiseptic materials on the base of polymer interpenetrating networks microgels and benzalkonium chloride. Int. J. Mol. Sci. 2022, 23, 4394. [Google Scholar] [CrossRef] [PubMed]
- Imani, S.M.; Ladouceur, L.; Marshall, T.; Maclachlan, R.; Soleymani, L.; Didar, T.F. Antimicrobial nanomaterials and coatings: Current mechanisms and future perspectives to control the spread of viruses including SARS-CoV-2. ACS Nano 2020, 14, 12341–12369. [Google Scholar] [CrossRef]
- Nasri, N.; Rusli, A.; Teramoto, N.; Jaafar, M.; Ku Ishak, K.M.; Shafiq, M.D.; Abdul Hamid, Z.A. Past and current progress in the development of antiviral/antimicrobial polymer coating towards COVID-19 prevention: A review. Polymers 2021, 13, 4234. [Google Scholar] [CrossRef]
- Panarin, E.F. Biologically active polymer nanosystems. Russ. Chem. Bull. 2017, 66, 1812–1820. [Google Scholar] [CrossRef]
- Gentili, V.; Pazzi, D.; Rizzo, S.; Schiuma, G.; Marchini, E.; Papadia, S.; Sartorel, A.; Di Luca, D.; Caccuri, F.; Bignozzi, C.A.; et al. Transparent polymeric formulations effective against SARS-CoV-2 infection. ACS Appl. Mater. Interfaces 2021, 13, 54648–54655. [Google Scholar] [CrossRef]
- Pitten, F.A.; Kramer, A. Efficacy of cetylpyridinium chloride used as oropharyngeal antiseptic. Arzneimittelforschung 2001, 51, 588–595. [Google Scholar] [CrossRef]
- Fromm-Dornieden, C.; Rembe, J.-D.; Schäfer, N.; Böhm, J.; Stuermer, E.K. Cetylpyridinium chloride and miramistin as antiseptic substances in chronic wound management—Prospects and limitations. J. Med. Microbiol. 2015, 64, 407–414. [Google Scholar] [CrossRef] [Green Version]
- Hoang, T.P.N.; Ghori, M.U.; Conway, B.R. Topical antiseptic formulations for skin and soft tissue infections. Pharmaceutics 2021, 13, 558. [Google Scholar] [CrossRef]
- Philippova, O.E.; Hourdet, D.; Audebert, R.; Khokhlov, A.R. Interaction of hydrophobically modified poly(acrylic acid) hydrogels with ionic surfactants. Macromolecules 1996, 29, 2822–2830. [Google Scholar] [CrossRef]
- Philippova, O.E.; Chtcheglova, L.A.; Karybiants, N.S.; Khokhlov, A.R. Two mechanisms of gel/surfactant binding. Polym. Gels Netw. 1998, 6, 409–421. [Google Scholar] [CrossRef]
- Mukhim, T.; Dey, J.; Das, S.; Ismail, K. Aggregation and adsorption behavior of cetylpyridinium chloride in aqueous sodium salicylate and sodium benzoate solutions. J. Colloid Interface Sci. 2010, 350, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Pound, G. Reversible Addition Fragmentation Chain Transfer (RAFT) Mediated Polymerization of N-Vinylpyrrolidone. Ph.D. Dissertation, Stellenbosch University, Stellenbosch, South Africa, 2008. [Google Scholar]
- Andreeva, A.S.; Philippova, O.E.; Khokhlov, A.R.; Islamov, A.K.; Kuklin, A.I. Effect of the mobility of charged units on the microphase separation in amphiphilic polyelectrolyte hydrogels. Langmuir 2005, 21, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Khandurina, Y.V.; Rogacheva, V.B.; Zezin, A.B.; Kabanov, V.A. Interaction of cross-linked polyelectrolytes with oppositely charged surfactants. Polym. Sci. 1994, 36, 184–188. [Google Scholar]
- Hansson, P.; Schneider, S.; Lindman, B. Phase separation in polyelectrolyte gels interacting with surfactants of opposite charge. J. Phys. Chem. B 2002, 106, 9777–9793. [Google Scholar] [CrossRef]
- Tararyshkin, D.; Kramarenko, E.; Khokhlov, A. Two-phase structure of polyelectrolyte gel/surfactant complexes. J. Chem. Phys. 2007, 127, 164905. [Google Scholar] [CrossRef]
- Hansson, P. Volume transition and phase coexistence in polyelectrolyte gels interacting with amphiphiles and proteins. Gels 2020, 6, 24. [Google Scholar] [CrossRef]
- Flint, S.J.; Racaniello, V.R.; Rall, G.F.; Skalka, A.M.; Enquist, L.W. The infectious cycle. In Principles of Virology, 4th ed.; ASM Press: Washington, DC, USA, 2015; Volume 1, pp. 24–52. [Google Scholar]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Arch. Exp. Pathol. Pharmakol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Nandy, K.; Srivastava, A.; Afgan, S.; Kumar, R.; Yadav, D.K.; Ganesan, V. Trithiocarbonate-mediated RAFT synthesis of a block copolymer: Silver nanoparticles integration and sensitive recognition of Hg2+. Polym. Bull. 2022. [Google Scholar] [CrossRef]
- Martínez-Cornejo, V.; Velázquez-Roblero, J.; Rosiles-González, V.; Correa-Duran, M.; Avila-Ortega, A.; Hernández-Núñez, E.; Le Lagadec, R.; González-Díaz, M.O. Synthesis of poly(2-acrylamido-2-methylpropane sulfonic acid) and its block copolymers with methyl methacrylate and 2-hydroxyethyl methacrylate by quasiliving radical polymerization catalyzed by a cyclometalated ruthenium(II) complex. Polymers 2020, 12, 1663. [Google Scholar] [CrossRef] [PubMed]
- Loría-Bastarrachea, M.I.; Herrera-Kao, W.; Cauich-Rodríguez, J.V.; Cervantes-Uc, J.M.; Vázquez-Torres, H.; Ávila-Ortega, A. A TG/FTIR study on the thermal degradation of poly(vinyl pyrrolidone). J. Therm. Anal. Calorim. 2011, 104, 737–742. [Google Scholar] [CrossRef]
- Starodubtsev, S.G. Influence of topological structure of polyelectrolyte networks on their interaction with oppositely charged micelle-forming surfactants. Polym. Sci. Ser. B 1990, 32, 925–930. [Google Scholar]
- Khokhlov, A.R.; Kramarenko, E.Y.; Makhaeva, E.E.; Starodubtzev, S.G. Collapse of polyelectrolyte networks induced by their interaction with oppositely charged surfactants. Macromolecules 1992, 25, 4779–4783. [Google Scholar] [CrossRef]
- Philippova, O.E.; Starodoubtzev, S.G. Interaction of slightly cross-linked gels of poly(diallyldimethylammonium bromide) with sodium dodecyl sulfate: Diffusion of surfactant ions in gel. J. Polym. Sci. Part B Polym. Phys. 1993, 31, 1471–1476. [Google Scholar] [CrossRef]
- Khokhlov, A.R.; Kramarenko, E.Y.; Makhaeva, E.E.; Starodubtzev, S.G. Collapse of polyelectrolyte networks induced by their interaction with an oppositely charged surfactant. Theory. Makromol. Chem. Theory Simul. 1992, 1, 105–118. [Google Scholar] [CrossRef]
- Kramarenko, E.Y.; Philippova, O.E.; Khokhlov, A.R. Polyelectrolyte networks as highly sensitive polymers. Polym. Sci. Ser. C 2006, 48, 1. [Google Scholar] [CrossRef]
- Zaroslov, Y.D.; Philippova, O.E.; Khokhlov, A.R. Change of elastic modulus of strongly charged hydrogels at the collapse transition. Macromolecules 1999, 32, 1508–1513. [Google Scholar] [CrossRef]
- Piculell, L.; Sjöström, J.; Lynch, I. Swelling isotherms of surfactant-responsive polymer gels. Progr. Colloid Polym. Sci. 2003, 122, 103–112. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release. II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Serra, L.; Domenech, J.; Peppas, N.A. Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 2006, 27, 5440–5451. [Google Scholar] [CrossRef] [PubMed]
- Karybiants, N.S.; Philippova, O.E.; Starodoubtsev, S.G.; Khokhlov, A.R. Conformational transitions in poly(methacrylic acid) gel/poly(ethylene glycol) complexes. Effect of the gel cross-linking density. Macromol. Chem. Phys. 1996, 197, 2373–2378. [Google Scholar] [CrossRef]
- Khan, S.; Ranjha, N.M. Effect of degree of cross-linking on swelling and on drug release of low viscous chitosan/poly(vinyl alcohol) hydrogels. Polym. Bull. 2014, 71, 2133–2158. [Google Scholar] [CrossRef]
- Vlachy, N.; Jaroda-Cwiklik, B.; Vácha, R.; Touraud, D.; Jungwirth, P.; Kunz, W. Hofmeister series and specific interactions of charged headgroups with aqueous ions. Adv. Colloid Interface Sci. 2009, 146, 42–47. [Google Scholar] [CrossRef]
- Strauss, U.P.; Leung, Y.P. Volume changes as a criterion for site binding of counterions by polyelectrolytes. J. Am. Chem. Soc. 1965, 87, 1476–1480. [Google Scholar] [CrossRef]
- Bungenberg de Jong, H.G. Colloid Science; Elsevier Publishing Co., Inc.: New York, NY, USA, 1949; Volume II, Chapter 9. [Google Scholar]
- Cloutier, M.; Mantovani, D.; Rosei, F. Antibacterial coatings: Challenges, perspectives, and opportunities. Trends Biotechnol. 2015, 33, 637–652. [Google Scholar] [CrossRef]
- Shrivastava, S.; Patil, H.P.; Mhaske, S.T.; Palkar, S.; Lalwani, S.; Mishra, A.C.; Arankalle, V.A. Isolation and genetic characterization of SARS-CoV-2 from Indian patients in a single family without H/O travel abroad. Virus Genes 2021, 57, 245–249. [Google Scholar] [CrossRef]
- Food and Drug Administration. 21 CFR Part 356. Oral health care drug products for over-the-counter human use; Tentative final monograph for oral antiseptic drug products. Fed. Regist. 1994, 59, 6094. [Google Scholar]
- Nelson, J.W.; Lyster, S.C. The toxicity of myristyl-gamma-picolinium chloride. J. Am. Pharm. Assoc. 1946, 35, 89–94. [Google Scholar] [CrossRef]
- Updegraff, D.M.; Kvam, D.C.; Robertson, J.E. N-(1,1-dihydroperfluorooctyl)pyridinium trifluoromethanesulfonate, a new quaternary ammonium antiseptic. J. Pharm. Sci. 1970, 59, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.T.; Burr, I.M. Benzalkonium chloride poisoning in infant twins. Arch. Pediatr. Adolesc. Med. 1975, 129, 1208–1209. [Google Scholar] [CrossRef] [PubMed]
- Karamov, E.V.; Larichev, V.F.; Kornilaeva, G.V.; Fedyakina, I.T.; Turgiev, A.S.; Shibaev, A.V.; Molchanov, V.S.; Philippova, O.E.; Khokhlov, A.R. Cationic Surfactants as Disinfectants against SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 6645. [Google Scholar] [CrossRef]
- Barltrop, J.A.; Owen, T.C.; Cory, A.H.; Cory, J.G. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators. Bioorg. Med. Chem. Lett. 1991, 1, 611–614. [Google Scholar] [CrossRef]
- Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993, 303, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Khorolsuren, Z.; Lang, O.; Vag, J.; Kohidai, L. Effect of dental antiseptic agents on the viability of human periodontal ligament cells. Saudi Dent. J. 2021, 33, 904–911. [Google Scholar] [CrossRef]
- Mukherjee, P.K.; Esper, F.; Buchheit, K.; Arters, K.; Adkins, I.; Ghannoum, M.A.; Salata, R.A. Randomized, double-blind, placebo-controlled clinical trial to assess the safety and effectiveness of a novel dual-action oral topical formulation against upper respiratory infections. BMC Infect. Dis. 2017, 17, 74. [Google Scholar] [CrossRef] [Green Version]
Samples | Total Concentration of Monomers, M | Fraction of Charged Monomer Units | Concentration of Cross- Linker, M | Degree of Cross- Linking | Concentration of PEG, wt% | |
---|---|---|---|---|---|---|
Feed | 1NMR | |||||
PAAm-AMPSA-1v | 1.4 | 0.02 | 0.019 | 0.00175 | 1:800 | 10 |
PAAm-AMPSA-1s | 1.4 | 0.02 | 0.020 | 0.00175 | 1:800 | 10 |
PAAm-AMPSA-2s | 1.4 | 0.02 | 0.018 | 0.00175 | 1:800 | 20 |
PAAm-AMPSA-3v | 2.8 | 0.02 | 0.020 | 0.00280 | 1:1000 | 0 |
PAAm-AMPSA-4v | 2.8 | 0.10 | 0.091 | 0.00280 | 1:1000 | 0 |
PAAm-AMPSA-5v | 2.8 | 0.02 | 0.018 | 0.00560 | 1:500 | 0 |
PAAm-MA | 2.8 | 0.02 | 0.017 | 0.00560 | 1:500 | 0 |
PVP-MA | 2.8 | 0.10 | 0.30 | 0.014 | 1:200 | 0 |
Concentration | Virus Titer | Inhibition Coefficient IC, % | |||
---|---|---|---|---|---|
mM | wt% | Control Ac | Experiment Ae | Log10 Reduction A | |
0.28 | 0.0095 | 7.0 | 0 | 7.0 | 100 |
0.14 | 0.0048 | 7.0 | 0 | 7.0 | 100 |
0.07 | 0.0024 | 7.0 | 0 | 7.0 | 100 |
0.025 | 0.0009 | 0 | 7.0 | 0 | 0 |
Sample | Experimental Conditions | Initial CPC Concentration in the Gel, wt% | Concentration of Released CPC, wt% | Virus Titer | Inhibition Coefficient IC, % | ||
---|---|---|---|---|---|---|---|
Control Ac | Experiment Ae | Log10 Reduction A | |||||
PAAm-AMPSA-1v | Rinsing *, day 1 | 8.3 | 0.057 | 7.00 | 0.00 | 7.00 | 100 |
PAAm-AMPSA-1s | Rinsing *, day 1 | 2.0 | 0.100 | 7.00 | 0.00 | 7.00 | 100 |
PAAm-AMPSA-2s | Rinsing *, day 1 | 2.0 | 0.145 | 7.00 | 0.00 | 7.00 | 100 |
PVP-MA-v | Rinsing *, day 1 | 2.0 | 0.078 | 7.00 | 0.00 | 7.00 | 100 |
PAAm-AMPSA-2s | Rinsing *, day 7 | 2.0 | 0.100 | 7.00 | 0.00 | 7.00 | 100 |
PVP-MA-v | Rinsing *, day 7 | 2.0 | 0.016 | 7.00 | 0.00 | 7.00 | 100 |
PAAm-AMPSA-1v | Direct contact ** | 8.3 | - | 7.00 | 0.00 | 7.00 | 100 |
PVP-MA-v | Direct contact ** | 2.0 | - | 7.00 | 0.00 | 7.00 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molchanov, V.S.; Shibaev, A.V.; Karamov, E.V.; Larichev, V.F.; Kornilaeva, G.V.; Fedyakina, I.T.; Turgiev, A.S.; Philippova, O.E.; Khokhlov, A.R. Antiseptic Polymer–Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2. Polymers 2022, 14, 2444. https://doi.org/10.3390/polym14122444
Molchanov VS, Shibaev AV, Karamov EV, Larichev VF, Kornilaeva GV, Fedyakina IT, Turgiev AS, Philippova OE, Khokhlov AR. Antiseptic Polymer–Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2. Polymers. 2022; 14(12):2444. https://doi.org/10.3390/polym14122444
Chicago/Turabian StyleMolchanov, Vyacheslav S., Andrey V. Shibaev, Eduard V. Karamov, Viktor F. Larichev, Galina V. Kornilaeva, Irina T. Fedyakina, Ali S. Turgiev, Olga E. Philippova, and Alexei R. Khokhlov. 2022. "Antiseptic Polymer–Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2" Polymers 14, no. 12: 2444. https://doi.org/10.3390/polym14122444
APA StyleMolchanov, V. S., Shibaev, A. V., Karamov, E. V., Larichev, V. F., Kornilaeva, G. V., Fedyakina, I. T., Turgiev, A. S., Philippova, O. E., & Khokhlov, A. R. (2022). Antiseptic Polymer–Surfactant Complexes with Long-Lasting Activity against SARS-CoV-2. Polymers, 14(12), 2444. https://doi.org/10.3390/polym14122444