Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Optimization of Formulation and Spray-Drying Conditions
2.2.2. Synthesis of Microparticles
2.2.3. Size and Size Distribution
2.2.4. Zeta Potential
2.2.5. Morphology
2.2.6. Roughness and Circularity
2.2.7. Powder Density and Flow Properties
2.2.8. Drug Content and Association Efficiency
2.2.9. Crystallinity of Powder
2.2.10. Thermal Analysis
2.2.11. FTIR Analysis
2.2.12. The In Vitro Drug Release Profile
2.2.13. Aerodynamic Behavior
2.2.14. Statistical Analysis
3. Results and Discussion
3.1. Synthesis of Microparticles
3.2. Particle Size and Zeta Potential
3.3. Morphology, Roughness and Circularity
3.4. Powder Density and Flow Properties
3.5. Drug Content and Association Efficiency
3.6. XRD Analysis
3.7. DSC Analysis
3.8. FTIR Analysis
3.9. Drug Dissolution and Mechanism of Drug Release
3.10. In Vitro Aerodynamic Behavior
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carneiro, S.P.; Carvalho, K.V.; de Oliveira Aguiar Soares, R.D.; Carneiro, C.M.; de Andrade, M.H.G.; Duarte, R.S.; dos Santos, O.D.H. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids Surf. B Biointerfaces 2019, 175, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Kaufmann, S.H. How can immunology contribute to the control of tuberculosis? Nat. Rev. Immunol. 2001, 1, 20–30. [Google Scholar] [CrossRef]
- Paramothayan, S. Essential Respiratory Medicine; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Hirota, K.; Hasegawa, T.; Hinata, H.; Ito, F.; Inagawa, H.; Kochi, C.; Soma, G.-I.; Makino, K.; Terada, H. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J. Control. Release 2007, 119, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Ruvalcaba, D.; González-Cortés, C.; Rivero-Lezcano, O.M. Human phagocytes lack the ability to kill Mycobacterium gordonae, a non-pathogenic mycobacteria. Immunol. Lett. 2008, 116, 72–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirota, K.; Hasegawa, T.; Nakajima, T.; Inagawa, H.; Kohchi, C.; Soma, G.-I.; Makino, K.; Terada, H. Delivery of rifampicin–PLGA microspheres into alveolar macrophages is promising for treatment of tuberculosis. J. Control. Release 2010, 142, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Sosnik, A.; Carcaboso, Á.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev. 2010, 62, 547–559. [Google Scholar] [CrossRef]
- Yadav, A.B.; Sharma, R.; Muttil, P.; Singh, A.K.; Verma, R.K.; Mohan, M.; Patel, S.K.; Misra, A. Inhalable microparticles containing isoniazid and rifabutin target macrophages and ‘stimulate the phagocyte’ to achieve high efficacy. Indian J. Exp. Biol. 2009, 47, 469–474. [Google Scholar]
- Hartkoorn, R.C.; Chandler, B.; Owen, A.; Ward, S.A.; Bertel Squire, S.; Back, D.J.; Khoo, S.H. Differential drug susceptibility of intracellular and extracellular tuberculosis, and the impact of P-glycoprotein. Tuberculosis 2007, 87, 248–255. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, W.; Zhang, W.; Mitchison, D. Mechanisms of Pyrazinamide Action and Resistance. Microbiol. Spectr. 2013, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Ntutela, S.; Smith, P.; Matika, L.; Mukinda, J.; Arendse, H.; Allie, N.; Estes, D.M.; Mabusela, W.; Folb, P.; Steyn, L. Efficacy of Artemisia afra phytotherapy in experimental tuberculosis. Tuberculosis 2009, 89, S33–S40. [Google Scholar] [CrossRef] [Green Version]
- Patwardhan, B.; Vaidya, A.D.; Chorghade, M. Ayurveda and natural products drug discovery. Curr. Sci. 2004, 86, 789–799. [Google Scholar]
- Buttini, F.; Colombo, P.; Rossi, A.; Sonvico, F.; Colombo, G. Particles and powders: Tools of innovation for non-invasive drug administration. J. Control. Release 2012, 161, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Momin, M.A.; Rangnekar, B.; Sinha, S.; Cheung, C.-Y.; Cook, G.M.; Das, S.C. Inhalable dry powder of bedaquiline for pulmonary tuberculosis: In vitro physicochemical characterization, antimicrobial activity and safety studies. Pharmaceutics 2019, 11, 502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, A.; Hickey, A.J.; Rossi, C.; Borchard, G.; Terada, H.; Makino, K.; Fourie, P.B.; Colombo, P. Inhaled drug therapy for treatment of tuberculosis. Tuberculosis 2011, 91, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Rau, J.L. The inhalation of drugs: Advantages and problems. Respir. Care 2005, 50, 367–382. [Google Scholar] [PubMed]
- Eedara, B.B.; Tucker, I.G.; Das, S.C. In vitro dissolution testing of respirable size anti-tubercular drug particles using a small volume dissolution apparatus. Int. J. Pharm. 2019, 559, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.S.; Rodrigues, M.T.; Domingues, R.M.; Torrado, E.; Reis, R.L.; Pedrosa, J.; Gomes, M.E. Exploring inhalable polymeric dry powders for anti-tuberculosis drug delivery. Mater. Sci. Eng. C 2018, 93, 1090–1103. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Xi, R.; Wang, Y.; Yang, X. Process optimization of spray-dried fanhuncaoin powder for pulmonary drug delivery and its pharmacokinetic evaluation in rats. Drug Dev. Ind. Pharm. 2018, 44, 1357–1370. [Google Scholar] [CrossRef]
- Sacks, L.V.; Pendle, S.; Orlovic, D.; Andre, M.; Popara, M.; Moore, G.; Thonell, L.; Hurwitz, S. Adjunctive salvage therapy with inhaled aminoglycosides for patients with persistent smear-positive pulmonary tuberculosis. Clin. Infect. Dis. 2001, 32, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Sermet-Gaudelus, I.; Le Cocguic, Y.; Ferroni, A.; Clairicia, M.; Barthe, J.; Delaunay, J.-P.; Brousse, V.; Lenoir, G. Nebulized antibiotics in cystic fibrosis. Pediatric Drugs 2002, 4, 455–467. [Google Scholar] [CrossRef]
- Todoroff, J.; Vanbever, R. Fate of nanomedicines in the lungs. Curr. Opin. Colloid Interface Sci. 2011, 16, 246–254. [Google Scholar] [CrossRef]
- Wu, X.; Hayes, D., Jr.; Zwischenberger, J.B.; Kuhn, R.J.; Mansour, H.M. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation. Drug Des. Dev. Ther. 2013, 7, 59. [Google Scholar]
- Adjei, A.; Garren, J. Pulmonary delivery of peptide drugs: Effect of particle size on bioavailability of leuprolide acetate in healthy male volunteers. Pharm. Res. 1990, 7, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Valente, S.A.; Silva, L.M.; Lopes, G.R.; Sarmento, B.; Coimbra, M.A.; Passos, C.P. Polysaccharide-based formulations as potential carriers for pulmonary delivery—A review of their properties and fates. Carbohydr. Polym. 2022, 277, 118784. [Google Scholar] [CrossRef]
- Hariyadi, D.M.; Islam, N. Current status of alginate in drug delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 8886095. [Google Scholar] [CrossRef] [PubMed]
- Spadari, C.d.C.; Lopes, L.B.; Ishida, K. Potential use of alginate-based carriers as antifungal delivery system. Front. Microbiol. 2017, 8, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möbus, K.; Siepmann, J.; Bodmeier, R. Zinc–alginate microparticles for controlled pulmonary delivery of proteins prepared by spray-drying. Eur. J. Pharm. Biopharm. 2012, 81, 121–130. [Google Scholar] [CrossRef]
- Farid, R.M.; Etman, M.A.; Nada, A.H.; Ebian, A.-E.A. Sodium alginate-based microspheres of salbutamol sulphate for nasal administration: Formulation and evaluation. Am. J. Pharma Tech Res. 2012, 2, 289–307. [Google Scholar]
- Kumar, M.M.; Abhishek, S.; Kumar, P.A.; Rajat, S.; Krishna, K. Recently investigated polymeric natural gums and mucilages for various drug delivery system. World J. Adv. Res. Rev. 2020, 6, 050–072. [Google Scholar] [CrossRef]
- Sabuj, M.Z.R.; Islam, N. Inhaled Antibiotics-Loaded Polymeric Nanoparticles for the Management of Lower Respiratory Tract Infections. Nanoscale Adv. 2021, 3, 4005–4018. [Google Scholar] [CrossRef]
- Arya, V. A review on anti-tubercular plants. Int. J. Pharma Tech Res. 2011, 3, 872–880. [Google Scholar]
- Alhajj, N.; O’Reilly, N.J.; Cathcart, H. Leucine as an excipient in spray dried powder for inhalation. Drug Discov. Today 2021, 26, 2384–2396. [Google Scholar] [CrossRef] [PubMed]
- Arpagaus, C. Pharmaceutical particle engineering via nano spray drying—Process parameters and application examples on the laboratory-scale. Int. J. Med. Nano Res. 2018, 5, 026. [Google Scholar] [CrossRef]
- Riley, T.; Christopher, D.; Arp, J.; Casazza, A.; Colombani, A.; Cooper, A.; Dey, M.; Maas, J.; Mitchell, J.; Reiners, M. Challenges with developing in vitro dissolution tests for orally inhaled products (OIPs). Aaps Pharmscitech 2012, 13, 978–989. [Google Scholar] [CrossRef] [Green Version]
- Shahin, H.I.; Vinjamuri, B.P.; Mahmoud, A.A.; Shamma, R.N.; Mansour, S.M.; Ammar, H.O.; Ghorab, M.M.; Chougule, M.B.; Chablani, L. Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. J. Control. Release 2019, 302, 126–139. [Google Scholar] [CrossRef]
- Thiyagarajan, D.; Huck, B.; Nothdurft, B.; Koch, M.; Rudolph, D.; Rutschmann, M.; Feldmann, C.; Hozsa, C.; Furch, M.; Besecke, K.F. Spray-dried lactose-leucine microparticles for pulmonary delivery of antimycobacterial nanopharmaceuticals. Drug Deliv. Transl. Res. 2021, 11, 1766–1778. [Google Scholar] [CrossRef]
- Guerreiro, F.; Swedrowska, M.; Patel, R.; Flórez-Fernández, N.; Torres, M.D.; da Costa, A.M.R.; Forbes, B.; Grenha, A. Engineering of konjac glucomannan into respirable microparticles for delivery of antitubercular drugs. Int. J. Pharm. 2021, 604, 120731. [Google Scholar] [CrossRef]
- Mosén, K.; Bäckström, K.; Thalberg, K.; Schaefer, T.; Kristensen, H.G.; Axelsson, A. Particle formation and capture during spray drying of inhalable particles. Pharm. Dev. Technol. 2005, 9, 409–417. [Google Scholar] [CrossRef]
- Rattes, A.L.R.; Oliveira, W.P. Spray drying conditions and encapsulating composition effects on formation and properties of sodium diclofenac microparticles. Powder Technol. 2007, 171, 7–14. [Google Scholar] [CrossRef]
- Sosnik, A.; Seremeta, K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C. Spray Drying Techniques for Food Ingredient Encapsulation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chow, A.H.; Tong, H.H.; Chattopadhyay, P.; Shekunov, B.Y. Particle engineering for pulmonary drug delivery. Pharm. Res. 2007, 24, 411–437. [Google Scholar] [CrossRef] [PubMed]
- Shoyele, S.A.; Cawthorne, S. Particle engineering techniques for inhaled biopharmaceuticals. Adv. Drug Deliv. Rev. 2006, 58, 1009–1029. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.; Zhu, S.; Chen, F.; Gao, Q.; Yu, S. Effect of different drying methods on the structure and digestibility of short chain amylose crystals. Food Hydrocoll. 2016, 52, 721–731. [Google Scholar] [CrossRef]
- Hadiwinoto, G.D.; Lip Kwok, P.C.; Lakerveld, R. A review on recent technologies for the manufacture of pulmonary drugs. Ther. Deliv. 2018, 9, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, P.; White, D.; Sulchek, T. Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS ONE 2013, 8, e60989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alhajj, N.; Zakaria, Z.; Naharudin, I.; Ahsan, F.; Li, W.; Wong, T.W. Critical physicochemical attributes of chitosan nanoparticles admixed lactose-PEG 3000 microparticles in pulmonary inhalation. Asian J. Pharm. Sci. 2020, 15, 374–384. [Google Scholar] [CrossRef]
- Healy, A.; McDonald, B.; Tajber, L.; Corrigan, O. Characterisation of excipient-free nanoporous microparticles (NPMPs) of bendroflumethiazide. Eur. J. Pharm. Biopharm. 2008, 69, 1182–1186. [Google Scholar] [CrossRef]
- Tyukova, V.; Kedik, S.; Panov, A.; Zhavoronok, E.; Mendeleev, D.; Senchikhin, I.; Fursova, A.Z.; Rumyantseva, Y.V.; Kolosova, N. Synthesis of a Disulfuram Inclusion Complex with Hydroxypropyl-β-Cyclodextrin and Its Effect on Cataract Development in Rats. Pharm. Chem. J. 2020, 53, 1158–1163. [Google Scholar] [CrossRef]
- Guzelgulgen, M.; Ozkendir-Inanc, D.; Yildiz, U.H.; Arslan-Yildiz, A. Glucuronoxylan-based quince seed hydrogel: A promising scaffold for tissue engineering applications. Int. J. Biol. Macromol. 2021, 180, 729–738. [Google Scholar] [CrossRef]
- D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm. 2014, 2014, 304757. [Google Scholar] [CrossRef] [Green Version]
- Salama, R.; Hoe, S.; Chan, H.-K.; Traini, D.; Young, P.M. Preparation and characterisation of controlled release co-spray dried drug–polymer microparticles for inhalation 1: Influence of polymer concentration on physical and in vitro characteristics. Eur. J. Pharm. Biopharm. 2008, 69, 486–495. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.G.; Santos-Oliveira, R.; Albernaz, M.S.; Canema, D.; Weismüller, G.; Barros, E.B.; Magalhães, L.; Lima-Ribeiro, M.H.M.; Pohlmann, A.R.; Guterres, S.S. Microparticles of Aloe vera/vitamin E/chitosan: Microscopic, a nuclear imaging and an in vivo test analysis for burn treatment. Eur. J. Pharm. Biopharm. 2014, 86, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, C.-H. Effects of fabrication conditions on the characteristics of etanidazole spray-dried microspheres. J. Microencapsul. 2002, 19, 495–510. [Google Scholar] [CrossRef]
- Sou, T.; Kaminskas, L.M.; Nguyen, T.-H.; Carlberg, R.; McIntosh, M.P.; Morton, D.A. The effect of amino acid excipients on morphology and solid-state properties of multi-component spray-dried formulations for pulmonary delivery of biomacromolecules. Eur. J. Pharm. Biopharm. 2013, 83, 234–243. [Google Scholar] [CrossRef] [PubMed]
- Mangal, S.; Meiser, F.; Lakio, S.; Morton, D.; Larson, I. The role of physico-chemical and bulk characteristics of co-spray dried l-leucine and polyvinylpyrrolidone on glidant and binder properties in interactive mixtures. Int. J. Pharm. 2015, 479, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Baranov, M.V.; Kumar, M.; Sacanna, S.; Thutupalli, S.; Van den Bogaart, G. Modulation of immune responses by particle size and shape. Front. Immunol. 2021, 11, 607945. [Google Scholar] [CrossRef]
- Yoo, J.-W.; Mitragotri, S. Polymer particles that switch shape in response to a stimulus. Proc. Natl. Acad. Sci. USA 2010, 107, 11205–11210. [Google Scholar] [CrossRef] [Green Version]
- Kwon, Y.-B.; Kang, J.-H.; Han, C.-S.; Kim, D.-W.; Park, C.-W. The effect of particle size and surface roughness of spray-dried bosentan microparticles on aerodynamic performance for dry powder inhalation. Pharmaceutics 2020, 12, 765. [Google Scholar] [CrossRef]
- Baldelli, A.; Boraey, M.A.; Nobes, D.S.; Vehring, R. Analysis of the particle formation process of structured microparticles. Mol. Pharm. 2015, 12, 2562–2573. [Google Scholar] [CrossRef]
- Aulton, M.E.; Taylor, K. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Dimer, F.A.; Ortiz, M.; Pohlmann, A.R.; Guterres, S.S. Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J. Drug Deliv. Sci. Technol. 2015, 29, 152–158. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Prasad, N.R.; Ganamani, A.; Balamurugan, E. Anticancer activity of resveratrol-loaded gelatin nanoparticles on NCI-H460 non-small cell lung cancer cells. Biomed. Prev. Nutr. 2013, 3, 64–73. [Google Scholar] [CrossRef]
- Khadka, P.; Hill, P.C.; Zhang, B.; Katare, R.; Dummer, J.; Das, S.C. A study on polymorphic forms of rifampicin for inhaled high dose delivery in tuberculosis treatment. Int. J. Pharm. 2020, 587, 119602. [Google Scholar] [CrossRef] [PubMed]
- Bhise, S.B.; More, A.B.; Malayandi, R. Formulation and in vitro evaluation of rifampicin loaded porous microspheres. Sci. Pharm. 2010, 78, 291–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medda, S.; Hajra, A.; Dey, U.; Bose, P.; Mondal, N.K. Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl. Nanosci. 2015, 5, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Nithya, A.; Rokesh, K.; Jothivenkatachalam, K. Biosynthesis, characterization and application of titanium dioxide nanoparticles. Nano Vis. 2013, 3, 169–174. [Google Scholar]
- Rasli, N.I.; Basri, H.; Harun, Z. Zinc oxide from Aloe vera extract: Two-level factorial screening of biosynthesis parameters. Heliyon 2020, 6, e03156. [Google Scholar] [CrossRef] [Green Version]
- Uyen, N.T.T.; Hamid, Z.A.A.; Ahmad, N.B. Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J. Drug Deliv. Sci. Technol. 2020, 58, 101796. [Google Scholar] [CrossRef]
- Makled, S.; Boraie, N.; Nafee, N. Nanoparticle-mediated macrophage targeting—A new inhalation therapy tackling tuberculosis. Drug Deliv. Transl. Res. 2021, 11, 1037–1055. [Google Scholar] [CrossRef]
- Al-Jeboori, F.; Al-Shimiesawi, T.; Jassim, O. Synthesis and characterization of some essential amino acid metal complexes having biological activity. J. Chem. Pharm. Res. 2013, 5, 172–176. [Google Scholar]
- Skrdla, P.J.; Floyd, P.D.; Dell’orco, P.C. Practical estimation of amorphous solubility enhancement using thermoanalytical data: Determination of the amorphous/crystalline solubility ratio for pure indomethacin and felodipine. J. Pharm. Sci. 2016, 105, 2625–2630. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, G.W.; Peppas, N.A. Analysis of non-Fickian transport in polymers using simplified exponential expressions. J. Membr. Sci. 1984, 17, 329–331. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release 1987, 5, 37–42. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kang, J.-H.; Lee, H.-G.; Kim, D.-W.; Rhee, Y.-S.; Kim, J.-Y.; Park, E.-S.; Park, C.-W. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols. Drug Des. Dev. Ther. 2016, 10, 4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, T.; Lin, S.; Niu, B.; Wang, X.; Huang, Y.; Zhang, X.; Li, G.; Pan, X.; Wu, C. Influence of physical properties of carrier on the performance of dry powder inhalers. Acta Pharm. Sin. B 2016, 6, 308–318. [Google Scholar] [CrossRef] [Green Version]
- Darquenne, C. Aerosol deposition in health and disease. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 140–147. [Google Scholar] [CrossRef] [Green Version]
- Heyder, J. Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc. Am. Thorac. Soc. 2004, 1, 315–320. [Google Scholar] [CrossRef]
- Cheng, Y.S. Mechanisms of pharmaceutical aerosol deposition in the respiratory tract. AAPS PharmSciTech 2014, 15, 630–640. [Google Scholar] [CrossRef]
- Geiser, M. Update on macrophage clearance of inhaled micro-and nanoparticles. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, 207–217. [Google Scholar] [CrossRef]
- Mohning, M.P.; Thomas, S.M.; Barthel, L.; Mould, K.J.; McCubbrey, A.L.; Frasch, S.C.; Bratton, D.L.; Henson, P.M.; Janssen, W.J. Phagocytosis of microparticles by alveolar macrophages during acute lung injury requires MerTK. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2018, 314, L69–L82. [Google Scholar] [CrossRef]
Sample | Rifampicin (g) | Aloe Vera Powder (g) | Sodium Alginate (g) | L-Leucine (g) | Alginate: L-Leucine (w:w) |
---|---|---|---|---|---|
F1 | 0.20 | 0.02 | 0.05 | 0.05 | 1:1 |
F2 | 0.20 | 0.02 | 0.05 | 0.10 | 1:2 |
F3 | 0.20 | 0.02 | 0.05 | 0.15 | 1:3 |
F4 | 0.20 | 0.02 | 0.05 | 0.20 | 1:4 |
F5 | 0.20 | 0.02 | 0.05 | 0.25 | 1:5 |
F6 | 0.20 | 0.02 | 0.25 | 0.05 | 5:1 |
F7 | 0.20 | 0.02 | 0.20 | 0.05 | 4:1 |
F8 | 0.20 | 0.02 | 0.15 | 0.05 | 3:1 |
F9 | 0.20 | 0.02 | 0.10 | 0.05 | 2:1 |
Pure drug | 0.20 | NA | NA | NA | NA |
Formulation Code | Particle Size (µm) | PDI | Zeta Potential (mV) | Roughness (nm) | Circularity | Yield (%) |
---|---|---|---|---|---|---|
F1 | 2.41 ± 0.79 | 0.04 ± 0.00 | −0.78 ± 0.14 | 1.13 ± 0.40 | 0.68 ± 0.02 | 60.47 ± 5.01 |
F2 | 2.82 ± 0.92 | 0.03 ± 0.00 | −0.61 ± 0.24 | 0.99 ± 0.39 | 0.74 ± 0.06 | 56.53 ± 4.03 |
F3 | 3.69 ± 0.53 | 0.02 ± 0.00 | −0.33 ± 0.12 | 0.88 ± 0.38 | 0.77 ± 0.00 | 48.38 ± 5.06 |
F4 | 2.62 ± 0.62 | 0.05 ± 0.00 | −0.86 ± 0.18 | 0.85 ± 0.12 | 0.74 ± 0.02 | 46.50 ± 8.01 |
F5 | 2.08 ± 0.71 | 0.03 ± 0.00 | 1.69 ± 0.11 | 1.20 ± 0.22 | 0.83 ± 0.01 | 59.51 ± 6.01 |
F6 | 3.21 ± 0.89 | 0.03 ± 0.00 | −0.26 ± 0.21 | 1.14 ± 0.22 | 0.89 ± 0.01 | 65.47 ± 5.01 |
F7 | 2.82 ± 0.55 | 0.04 ± 0.00 | −0.40 ± 0.09 | 0.77 ± 0.33 | 0.94 ± 0.01 | 60.76 ± 7.04 |
F8 | 2.93 ± 0.95 | 0.03 ± 0.00 | −0.46 ± 0.18 | 0.76 ± 0.14 | 0.72 ± 0.02 | 55.11 ± 6.03 |
F9 | 2.65 ± 0.78 | 0.02 ± 0.00 | −0.61 ± 0.148 | 0.67 ± 0.52 | 0.96 ± 0.03 | 52.07 ± 4.01 |
Pure drug | 3.19 ± 0.53 | 0.04 ± 0.00 | 0.28 ± 0.22 | 1.44 ± 0.23 | 0.46 ± 0.02 | 45.87 ± 2.01 |
Formulation Code | Drug Content (mg/mg) | Association Efficiency (%) | Bulk Density (g/mL) | Tapped Density (g/mL) | Carr’s Index (%) | Hausner’s Ratio |
---|---|---|---|---|---|---|
F1 | 0.245 ± 0.008 | 39.28 ± 1.064 | 0.20 ± 0.01 | 0.47 ± 0.03 | 57.50 | 2.35 |
F2 | 0.265 ± 0.010 | 49.08 ± 1.91 | 0.18 ± 0.03 | 0.50 ± 0.02 | 64.30 | 2.80 |
F3 | 0.373 ± 0.012 | 78.42 ± 2.57 | 0.13 ± 0.01 | 0.38 ± 0.03 | 65.00 | 2.86 |
F4 | 0.397 ± 0.011 | 93.36 ± 2.52 | 0.15 ± 0.01 | 0.37 ± 0.04 | 60.00 | 2.50 |
F5 | 0.368 ± 0.007 | 95.68 ± 1.94 | 0.25 ± 0.05 | 0.40 ± 0.03 | 37.50 | 1.60 |
F6 | 0.370 ± 0.008 | 96.15 ± 2.15 | 0.18 ± 0.04 | 0.35 ± 0.05 | 47.99 | 1.92 |
F7 | 0.373 ± 0.007 | 87.65 ± 1.59 | 0.12 ± 0.01 | 0.21 ± 0.03 | 42.85 | 1.75 |
F8 | 0.355 ± 0.008 | 74.64 ± 1.78 | 0.08 ± 0.01 | 0.20 ± 0.05 | 60.00 | 2.50 |
F9 | 0.332 ± 0.009 | 61.62 ± 1.77 | 0.27 ± 0.03 | 0.43 ± 0.02 | 37.21 | 1.61 |
Formulation | R2 | n | K | Mechanism |
---|---|---|---|---|
F4 | 0.9756 | 0.6429 | 0.024 ± 0.0565 | non-Fickian mechanism |
F5 | 0.9792 | 0.7335 | 0.076 ± 0.1868 | non-Fickian mechanism |
F6 | 0.9972 | 0.8496 | 0.353 ± 0.8873 | non-Fickian mechanism |
F7 | 0.9789 | 0.6461 | 0.023 ± 0.0653 | non-Fickian mechanism |
Aerodynamic Parameters | F4 | F5 | F6 | F7 |
---|---|---|---|---|
Daer | 1.03 | 2.025 | 1.571 | 1.345 |
MMAD | 1.44 ± 0.03 | 1.59 ± 0.05 | 1.42 ± 0.02 | 1.59 ± 0.03 |
GSD | 3.16 ± 0.02 | 4.08 ± 0.07 | 3.79 ± 0.05 | 3.13 ± 0.07 |
TD (mg) | 7.94 | 7.36 | 7.40 | 7.46 |
ED (mg) | 5.46 ± 0.25 | 4.54 ± 0.28 | 4.84 ± 0.56 | 5.28 ± 0.14 |
DD (mg) | 3.38 ± 0.18 | 2.74 ± 0.19 | 3.20 ± 0.21 | 3.91 ± 0.11 |
PD | 68.72 ± 3.85 | 61.72 ± 4.34 | 65.35 ± 3.19 | 70.71± 5.39 |
PI | 42.54 ± 2.25 | 37.18 ± 1.95 | 43.22 ± 2.23 | 52.39 ± 2.95 |
A. Mass deposited on all stages | ||||
FPD | 3.38 ± 0.16 | 2.74 ± 0.25 | 3.20 ± 0.21 | 3.91 ± 0.15 |
FPF | 61.95 ± 4.78 | 60.24 ± 3.25 | 66.15 ± 2.25 | 74.09 ± 2.33 |
RF | 100 ± 0.00 | 100 | 100 | 100 |
B. Mass deposited on stage 2 and below | ||||
FPD | 3.09 ± 0.15 | 2.35 ± 0.18 | 2.81 ± 0.19 | 3.52 ± 0.13 |
FPF | 56.72 ± 4.03 | 51.74 ± 3.43 | 58.16 ± 2.93 | 66.77 ± 2.44 |
RF | 91.57 ± 2.38 | 85.89 ± 3.03 | 87.93 ± 4.11 | 90.12 ± 3.93 |
C. Mass deposited on stage 2 and below | ||||
FPD | 2.73 ± 0.14 | 1.96 ± 0.24 | 2.43 ± 0.17 | 2.94 ± 0.14 |
FPF | 50.13 ± 3.97 | 43.22 ± 4.07 | 50.28 ± 3.15 | 55.70 ± 2.17 |
RF | 80.93 ± 3.98 | 71.74 ± 4.57 | 76.01 ± 2.27 | 75.18 ± 2.44 |
D. Aerosol mass in the range of ≥ 0.5 ≤ 3µm | ||||
FPD | 1.96 ± 0.13 | 1.32 ± 0.11 | 1.65 ± 0.19 | 2.16 ± 0.06 |
FPF | 35.97 ± 0.16 | 29.14 ± 1.22 | 34.18 ± 1.34 | 40.94 ± 0.22 |
RF | 57.90 ± 1.89 | 48.37 ± 2.42 | 51.68 ± 1.98 | 55.26 ± 1.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naz, F.F.; Shah, K.U.; Niazi, Z.R.; Zaman, M.; Lim, V.; Alfatama, M. Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers 2022, 14, 2491. https://doi.org/10.3390/polym14122491
Naz FF, Shah KU, Niazi ZR, Zaman M, Lim V, Alfatama M. Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers. 2022; 14(12):2491. https://doi.org/10.3390/polym14122491
Chicago/Turabian StyleNaz, Faiqa Falak, Kifayat Ullah Shah, Zahid Rasul Niazi, Mansoor Zaman, Vuanghao Lim, and Mulham Alfatama. 2022. "Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin" Polymers 14, no. 12: 2491. https://doi.org/10.3390/polym14122491
APA StyleNaz, F. F., Shah, K. U., Niazi, Z. R., Zaman, M., Lim, V., & Alfatama, M. (2022). Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers, 14(12), 2491. https://doi.org/10.3390/polym14122491