Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts
Abstract
:1. Introduction
2. Background
2.1. Literature Review
2.2. Application of Circular Economy Concepts and Sustainable Development Goals
- The treatment of wastewater is a promising approach to the CE model based on the SDG 6 to address water pollution and increase current water supply–demand through recycling and re-use in the future.
- SDG 7 is to ensure that everyone has access to affordable, efficient, renewable, and smart energy.
- SDG 8 promotes sustainable economic growth and decent work for everyone.
- SDG 12 is to ensure a sustainable framework of consumption as well as the production process.
- SDG 15 is relevant to the restoration of natural capital and terrestrial ecosystems in a sustainable way.
3. Materials and Methods
3.1. Basic Materials
3.2. Bitumen Modification
3.3. Testing and Preparation of Specimens
3.4. Marshall Characteristics
3.5. Response Surface Methodology
4. Results and Discussion
4.1. Performance Analysis of Polymer-Modified Bitumen
4.2. Analysis and Optimization of Polymer Modified Bitumen Using RSM
4.3. Statistical Analysis and ANOVA Results
4.4. Marshall Stability Analysis of Modified Bitumen
4.5. Marshall Flow Analysis of Modified Bitumen
4.6. Marshall Quotient Analysis of Modified Bitumen
4.7. Optimization of Polymer-Modified Asphalt Mixtures of PET and PE
4.8. Environmental Impact Analysis of Polymer-Modified Bitumen
5. Conclusions
- The research suggests that employing domestic polymer waste, namely PET and PE plastic, as a modifier in 60/70 grade bitumen and pavement mixtures is a promising and novel strategy.
- The current study investigated three parameters of Marshall characteristics for pure and polymer-modified asphalt binder and mixtures. There is only one parameter, MF, which is not optimized to within the standard range by RSM. Statistical analyses could not be performed for the MF response owing to a lack of data point diversity. This could be due to too large runs of data or range.
- The optimization of responses is determined by RSM is as follows: MS is 42.98 kN, MF is 5.08 mm, and MQ (kN/mm) is 8.66, indicating favorable and consistent precision when compared with experimental values.
- The incorporation of both waste polymers (PET and PE) dramatically reduces penetration (0.1 mm) and ductility (cm) measurements while increasing flashpoint (°C) and softening point (°C) readings compared with the corresponding standard range.
- The polymer-modified mixtures had better stability strength than the control specimen, allowing them to withstand heavy traffic loads and local environmental conditions.
- Similarly, the increased Marshall quotient (stability/flow) readings showed that asphalt mixtures modified with both polymer materials became stiffer and showed great resilience against permanent deformation after 1 and 30 days of testing when placed in local environmental conditions.
- The use of polymer waste contents in asphalt mixtures during road construction will help to extend the expected lifespan of our roadways and assist in the diversion of millions of metric tons (MMT) of plastic wastes from landfills; both of these are positive outcomes.
6. Recommendations and Limitations
- Proactive rules, monitoring, and assistance are needed, particularly in developing countries, to encourage the utilization of polymer waste (i.e., PET and PE) by road companies and organizations in the construction and maintenance of road projects.
- Municipal waste management organizations should also establish appropriate waste disposal mechanisms to allow for the distinct collection and disposal of plastic, in addition to addressing this major current issue.
- Future testing should include a variety of mixing circumstances to determine the strength and fatigue properties of PET- or PE-modified asphalt mixes. Moreover, future research could also include a comparison of PET concentration variations over time, as well as aging scenarios paired with UV exposure.
- In addition, the effect of temperature variation on the road surface due to environmental conditions with new parameters is also recommended and will be studied in the future for a better understanding of the behaviour of asphalt modified with plastic wastes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tahmoorian, F.; Samali, B.; Yeaman, J. Evaluation of structural and thermal properties of rubber and HDPE for utilization as binder modifier. Modif. Asph. 2018, 109, 109–127. [Google Scholar]
- Nizamuddin, S.; Boom, Y.J.; Giustozzi, F. Sustainable polymers from recycled waste plastics and their virgin counterparts as bitumen modifiers: A comprehensive review. Polymers 2021, 13, 3242. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, Q.-A. Influence of crumb rubber particle sizes on rutting, low temperature cracking, fracture, and bond strength properties of asphalt binder. Mater. Struct. 2021, 54, 54. [Google Scholar] [CrossRef]
- Xia, C.; Chen, M.; Geng, J.; Liao, X.; Chen, Z. Swelling and degradation characteristics of crumb rubber modified asphalt during processing. Math. Probl. Eng. 2021, 2021, 6682905. [Google Scholar] [CrossRef]
- Yin, J.; Wu, W. Utilization of waste nylon wire in stone matrix asphalt mixtures. Waste Manag. 2018, 78, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Yin, J. The feasibility of waste nylon filament used as reinforcement in asphalt mixture. Int. J. Pavement Res. Technol. 2020, 13, 212–221. [Google Scholar] [CrossRef]
- Movilla-Quesada, D.; Lagos-Varas, M.; Raposeiras, A.C.; Muñoz-Cáceres, O.; Andrés-Valeri, V.C.; Aguilar-Vidal, C. Analysis of Greenhouse Gas Emissions and the Environmental Impact of the Production of Asphalt Mixes Modified with Recycled Materials. Sustainability 2021, 13, 8081. [Google Scholar] [CrossRef]
- Liang, M.; Xin, X.; Fan, W.; Zhang, J.; Jiang, H.; Yao, Z. Comparison of rheological properties and compatibility of asphalt modified with various polyethylene. Int. J. Pavement Eng. 2021, 22, 11–20. [Google Scholar] [CrossRef]
- Du, Z.; Jiang, C.; Yuan, J.; Xiao, F.; Wang, J. Low temperature performance characteristics of polyethylene modified asphalts—A review. Constr. Build. Mater. 2020, 264, 120704. [Google Scholar] [CrossRef]
- Habib, N.Z.; Kamaruddin, I.; Napiah, M.; Isa, M.T. Rheological properties of polyethylene and polypropylene modified bitumen. Int. J. Civ. Environ. Eng. 2011, 3, 96–100. [Google Scholar]
- Abuaddous, M.; Taamneh, M.M.; Rabab’ah, S.R. The potential use of recycled polyethylene terephthalate (RPET) plastic waste in asphalt binder. Int. J. Pavement Res. Technol. 2021, 14, 579–587. [Google Scholar] [CrossRef]
- Anwar, M.K.; Shah, S.A.R.; Alhazmi, H. Recycling and utilization of polymers for road construction projects: An application of the circular economy concept. Polymers 2021, 13, 1330. [Google Scholar] [CrossRef] [PubMed]
- Mahida, S.; Shah, Y.U.; Sharma, S. Analysis of the influence of using waste polystyrene in virgin bitumen. Int. J. Pavement Res. Technol. 2022, 15, 626–639. [Google Scholar] [CrossRef]
- Veropalumbo, R.; Oreto, C.; Viscione, N.; Biancardo, S.A.; Russo, F. Environmental assessment of asphalt mastics containing plastic bottles and jet grouting waste. Environ. Impact Assess. Rev. 2022, 93, 106736. [Google Scholar] [CrossRef]
- Mosa, A.; Jawad, I.; Salem, L. Modification of the properties of warm mix asphalt using recycled plastic bottles. Int. J. Eng. 2018, 31, 1514–1520. [Google Scholar]
- Mendonça, A.M.G.D.; Melo Neto, O.d.M.; Rodrigues, J.K.G.; Silvani, C.; Batista de Lima, R.K. Physicochemical and rheological effects of the incorporation of micronized polyethylene terephthalate in asphalt binder. Pet. Sci. Technol. 2022, 40, 822–838. [Google Scholar] [CrossRef]
- Boger, Z.; Guterman, H. Knowledge extraction from artificial neural network models. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics; Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; pp. 3030–3035. [Google Scholar]
- Alawi, M.H.; Rajab, M.I. Applications of neural network for optimum asphaltic concrete mixtures. In Proceedings of the 5th WSEAS International Conference on Simulation, Modelling and Optimization, Corfu, Greece, 17 August 2005; pp. 17–19. [Google Scholar]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef] [Green Version]
- Rezakazemi, M.; Vatani, A.; Mohammadi, T. Synergistic interactions between POSS and fumed silica and their effect on the properties of crosslinked PDMS nanocomposite membranes. RSC Adv. 2015, 5, 82460–82470. [Google Scholar] [CrossRef]
- Farahani, H.; Palassi, M.; Galooyak, S. Rheology investigation of waste LDPE and crumb rubber modified bitumen. Eng. Solid Mech. 2018, 6, 27–38. [Google Scholar] [CrossRef]
- Rahi, D.; Chandak, R.; Vishwakarma, A. Utilization of liquid plastic waste in bitumen for construction of roads. Int. J. Sci. Res. 2014, 3, 020010. [Google Scholar]
- Anwar, M.K.; Shah, S.A.R.; Qurashi, M.A.; Saeed, M.H.; Nisar, A.; Khan, A.N.; Waseem, M. Performance Evaluation of Modified Bitumen Using EPS Beads for Green and Sustainable Development of Polymer-Based Asphalt Mixtures. In Proceedings of the Multidisciplinary Digital Publishing Institute Proceedings, Online, 5–25 November 2020; p. 36. [Google Scholar]
- Brasileiro, L.; Moreno-Navarro, F.; Tauste-Martínez, R.; Matos, J.; Rubio-Gámez, M.d.C. Reclaimed polymers as asphalt binder modifiers for more sustainable roads: A review. Sustainability 2019, 11, 646. [Google Scholar] [CrossRef] [Green Version]
- Omranian, S.R.; Hamzah, M.O.; Valentin, J.; Hasan, M.R.M. Determination of optimal mix from the standpoint of short term aging based on asphalt mixture fracture properties using response surface method. Constr. Build. Mater. 2018, 179, 35–48. [Google Scholar] [CrossRef]
- Tan, Y.-Q.; Guo, M.; Zhang, L.; Cao, L.-P. Performance optimization method of composite modified asphalt sealant. J. Highw. Transp. Res. Dev. 2013, 7, 1–7. [Google Scholar] [CrossRef]
- Kavussi, A.; Qorbani, M.; Khodaii, A.; Haghshenas, H. Moisture susceptibility of warm mix asphalt: A statistical analysis of the laboratory testing results. Constr. Build. Mater. 2014, 52, 511–517. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Golchin, B.; Tye, C.T. Determination of the optimum binder content of warm mix asphalt incorporating Rediset using response surface method. Constr. Build. Mater. 2013, 47, 1328–1336. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Omranian, S.R. Effects of extended short-term aging duration on asphalt binder behaviour at high temperatures. Balt. J. Road Bridge Eng. 2016, 11, 302–312. [Google Scholar] [CrossRef]
- Hamzah, M.O.; Gungat, L.; Golchin, B. Estimation of optimum binder content of recycled asphalt incorporating a wax warm additive using response surface method. Int. J. Pavement Eng. 2017, 18, 682–692. [Google Scholar] [CrossRef]
- Khodaii, A.; Haghshenas, H.; Tehrani, H.K. Effect of grading and lime content on HMA stripping using statistical methodology. Constr. Build. Mater. 2012, 34, 131–135. [Google Scholar] [CrossRef]
- Haghshenas, H.; Khodaii, A.; Khedmati, M.; Tapkin, S. A mathematical model for predicting stripping potential of Hot Mix Asphalt. Constr. Build. Mater. 2015, 75, 488–495. [Google Scholar] [CrossRef]
- Brockenbrough, R.L.; Boedecker, J.K.J. Highway Engineering Handbook, 2nd ed.; McGraw Hill Professional: New York, NY, USA, 2003. [Google Scholar]
- Anwar, M.K.; Shah, S.A.R.; Sadiq, A.N.; Siddiq, M.U.; Ahmad, H.; Nawaz, S.; Javead, A.; Saeed, M.H.; Khan, A.R. Symmetric Performance Analysis for Mechanical Properties of Sustainable Asphalt Materials under Varying Temperature Conditions: An Application of DT and NDT Digital Techniques. Symmetry 2020, 12, 433. [Google Scholar] [CrossRef] [Green Version]
- Ali, F.; Khan, M.A.; Qurashi, M.A.; Shah, S.A.R.; Khan, N.M.; Khursheed, Z.; Rahim, H.S.; Arshad, H.; Farhan, M.; Waseem, M. Utilization of Pyrolytic Carbon Black Waste for the development of Sustainable Materials. Processes 2020, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Aodah, H.H.; Kareem, Y.N.; Chandra, S. Performance of bituminous mixes with different aggregate gradations and binders. Int. J. Eng. Technol. 2012, 2, 2049–3444. [Google Scholar]
- Qurashi, M.A.; Shah, S.A.R.; Farhan, M.; Taufiq, M.; Khalid, W.; Arshad, H.; Tayyab, M.; Shahzadi, G.; Waseem, M. Sustainable Design and Engineering: A Relationship Analysis between Digital Destructive and Non-Destructive Testing Process for Lightweight Concrete. Processes 2019, 7, 791. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Acebo, H.; Mindra, N.; Railean, A.; Rojí, E. Rigid pavement performance models by means of Markov Chains with half-year step time. Int. J. Pavement Eng. 2019, 20, 830–843. [Google Scholar] [CrossRef]
- Bahia, H.U.; Hislop, W.P.; Zhai, H.; Rangel, A. Classification of asphalt binders into simple and complex binders. J. Assoc. Asph. Paving Technol. 1998, 67, 1–41. [Google Scholar]
- Smagulova, N.; Kairbekov, Z.; Ermek, A.; Yermoldina, E. Production of bitumens from coal sources modified by elementary sulfur. Adv. Mater. Res. 2012, 535, 1815–1818. [Google Scholar] [CrossRef]
- Masson, J. Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen. Energy Fuels 2008, 22, 2637–2640. [Google Scholar] [CrossRef] [Green Version]
- Senior-Arrieta, V.; Córdoba-Maquilón, J.E. Mechanical characterization of porous asphalt mixes modified with fatty acid amides-FAA. Ing. Investig. 2017, 37, 43–48. [Google Scholar]
- Navarro, F.; Partal, P.; Martınez-Boza, F.; Gallegos, C. Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel 2004, 83, 2041–2049. [Google Scholar] [CrossRef]
- Bai, M. Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder. Constr. Build. Mater. 2017, 150, 766–773. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U. Modification of road bitumens with thermoplastic polymers. Polym. Test. 2000, 20, 77–86. [Google Scholar] [CrossRef]
- Sengoz, B.; Isikyakar, G. Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. J. Hazard. Mater. 2008, 150, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Valtorta, D.; Poulikakos, L.; Partl, M.; Mazza, E. Rheological properties of polymer modified bitumen from long-term field tests. Fuel 2007, 86, 938–948. [Google Scholar] [CrossRef]
- Moreno-Navarro, F.; Sol-Sánchez, M.; Jimenez del Barco, A.; Rubio-Gámez, M. Analysis of the influence of binder properties on the mechanical response of bituminous mixtures. Int. J. Pavement Eng. 2017, 18, 73–82. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, Y.; Han, S.; Yang, Y. Application of FTIR spectroscopy with solvent-cast film and PLS regression for the quantification of SBS content in modified asphalt. Int. J. Pavement Eng. 2019, 20, 1336–1341. [Google Scholar] [CrossRef]
- Yousefi, A.A. Polyethylene dispersions in bitumen: The effects of the polymer structural parameters. J. Appl. Polym. Sci. 2003, 90, 3183–3190. [Google Scholar] [CrossRef]
- Su, N.; Chen, J. Engineering properties of asphalt concrete made with recycled glass. Resour. Conserv. Recycl. 2002, 35, 259–274. [Google Scholar] [CrossRef]
- Pérez, I.; Toledano, M.; Gallego, J.; Taibo, J. Mechanical properties of hot mix asphalt made with recycled aggregates from reclaimed construction and demolition debris. Mater. Constr. 2007, 57, 17–29. [Google Scholar]
- Chen, M.-Z.; Lin, J.-T.; Wu, S.-P.; Liu, C.-H. Utilization of recycled brick powder as alternative filler in asphalt mixture. Constr. Build. Mater. 2011, 25, 1532–1536. [Google Scholar] [CrossRef]
- García-Travé, G.; Tauste, R.; Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M. Mechanical Performance of SMA Mixtures Manufactured with Reclaimed Geomembrane–Modified Binders. J. Mater. Civ. Eng. 2018, 30, 04017284. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Al-Abdul Wahhab, H.; Dalhat, M.; Habib, M. Storage stability and high-temperature performance of asphalt binder modified with recycled plastic. Road Mater. Pavement Des. 2017, 18, 1117–1134. [Google Scholar] [CrossRef]
- Vila-Cortavitarte, M.; Lastra-González, P.; Calzada-Pérez, M.Á.; Indacoechea-Vega, I. Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. J. Clean. Prod. 2018, 170, 1279–1287. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, Y.; Zhao, K.; Sumalee, A. The use of natural rubber latex as a renewable and sustainable modifier of asphalt binder. Int. J. Pavement Eng. 2017, 18, 547–559. [Google Scholar] [CrossRef]
- Junco, C.; Gadea, J.; Rodríguez, A.; Gutiérrez-González, S.; Calderón, V. Durability of lightweight masonry mortars made with white recycled polyurethane foam. Cem. Concr. Compos. 2012, 34, 1174–1179. [Google Scholar] [CrossRef]
- Gutiérrez-González, S.; Gadea, J.; Rodríguez, A.; Junco, C.; Calderón, V. Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Constr. Build. Mater. 2012, 28, 653–658. [Google Scholar] [CrossRef]
- Tribout, C.; Husson, B. Use of treated sediments in road building techniques. Eur. J. Environ. Civ. Eng. 2011, 15, 197–213. [Google Scholar] [CrossRef]
- Carrera, V.; Cuadri, A.; García-Morales, M.; Partal, P. The development of polyurethane modified bitumen emulsions for cold mix applications. Mater. Struct. 2015, 48, 3407–3414. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo, M.; Navarro, F.; Martínez-Boza, F.; Gallegos, C. Bituminous polyurethane foams for building applications: Influence of bitumen hardness. Constr. Build. Mater. 2012, 30, 706–713. [Google Scholar] [CrossRef]
- Vaitkus, A.; Paliukaitė, M. Evaluation of time loading influence on asphalt pavement rutting. Procedia Eng. 2013, 57, 1205–1212. [Google Scholar] [CrossRef] [Green Version]
- Tigdemir, M.; Kalyoncuoglu, S.F.; Kalyoncuoglu, U.Y. Application of ultrasonic method in asphalt concrete testing for fatigue life estimation. NDT E Int. 2004, 37, 597–602. [Google Scholar] [CrossRef]
- Roberts, F.L.; Kandhal, P.S.; Brown, E.R.; Lee, D.-Y.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design and Construction; NAPA Research and Education Foundation: Lanham, MD, USA, 1991. [Google Scholar]
- Ahmed, K.; Irfan, M.; Ahmed, S.; Ahmed, A.; Khattak, A. Experimental investigation of strength and stiffness characteristics of hot mix asphalt (HMA). Procedia Eng. 2014, 77, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Mikolaj, J.; Remek, L.; Macula, M. Asphalt concrete overlay optimization based on pavement performance models. Adv. Mater. Sci. Eng. 2017, 2017, 6063508. [Google Scholar] [CrossRef] [Green Version]
- Movilla-Quesada, D.; Raposeiras, A.; Silva-Klein, L.; Lastra-González, P.; Castro-Fresno, D. Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen. Waste Manag. 2019, 87, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Deng, C.; Li, Q.; Liu, H. Effect of compaction methods on physical and mechanical properties of asphalt mixture. J. Mater. Civ. Eng. 2019, 31, 04019075. [Google Scholar] [CrossRef]
- Chen, W.-F.; Liew, J.R. The Civil Engineering Handbook; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Shah, S.A.R.; Arshad, H.; Waqar, A.; Saeed, M.H.; Hafeez, S.; Mansoor, J.; Sadiq, A.N.; Malik, M.A. Saving Energy in the Transportation Sector: An Analysis of Modified Bitumen Application Based on Marshall Test. Energies 2018, 11, 3025. [Google Scholar] [CrossRef] [Green Version]
- Baldo, N.; Manthos, E.; Miani, M. Stiffness modulus and marshall parameters of hot mix asphalts: Laboratory data modeling by artificial neural networks characterized by cross-validation. Appl. Sci. 2019, 9, 3502. [Google Scholar] [CrossRef] [Green Version]
- Baldo, N.; Manthos, E.; Pasetto, M. Analysis of the Mechanical Behaviour of Asphalt Concretes Using Artificial Neural Networks. Adv. Civ. Eng. 2018, 2018, 1650945. [Google Scholar] [CrossRef] [Green Version]
- Saeed, M.H.; Shah, S.A.R.; Arshad, H.; Waqar, A.; Imam, M.A.H.; Sadiq, A.N.; Hafeez, S.; Mansoor, J.; Waseem, M. Sustainable Silicon Waste Material Utilization for Road Construction: An Application of Modified Binder for Marshall Stability Analysis. Appl. Sci. 2019, 9, 1803. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Sustainable Development Goals. About the Sustainable Development Goals. Available online: https://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 13 May 2022).
- Hussain, S.; Zhou, X.; Shah, S.A.R.; Ahmad, N.; Anwar, M.K.; Basheer, M.A. Utilization of radium-bead material for road safety: An application of the circular economy concept. Polymers 2021, 13, 3708. [Google Scholar] [CrossRef]
- Knudsen, M.S.; Kaivo-oja, J. Bridging Industry 4.0 and Circular Economy: A New Research Agenda for Finland. Tulevaisuuden Tutkimuskeskuksen Blogi. Available online: https://ffrc.wordpress.com/2018/09/12/bridging-industry-4-0-and-circular-economy (accessed on 13 May 2022).
- Schroeder, P.; Anggraeni, K.; Weber, U. The relevance of circular economy practices to the sustainable development goals. J. Ind. Ecol. 2019, 23, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Valverde, J.-M.; Avilés-Palacios, C. Circular Economy as a Catalyst for Progress towards the Sustainable Development Goals: A Positive Relationship between Two Self-Sufficient Variables. Sustainability 2021, 13, 12652. [Google Scholar] [CrossRef]
- PWC. The Road to Circularity. Available online: https://www.pwc.de/de/nachhaltigkeit/pwc-circular-economy-study-2019.pdf (accessed on 13 May 2022).
- Bitumen, S. The Shell Bitumen Industrial Handbook; Thomas Telford: Lodon, UK, 1995. [Google Scholar]
- Kemalov, R.A.; Kemalov, A.F.; Nam, F.K. Comprehensive analysis of electrochemical and structural-dynamic properties of bitumnious insulating materials. Indian J. Sci. Technol. 2016, 9. [Google Scholar] [CrossRef]
- ASTM D-D113-07; Standard Test Method for Ductility of Asphalt Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- ASTM D5-2006; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2013.
- ASTM D98-18; Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester. American Society for Testing and Materials: West Conshohocken, PA, USA, 2014.
- ASTM D36-95; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). American Society for Testing and Materials: West Conshohocken, PA, USA, 2014.
- Testing Aggregates. Part 105: Methods for Determination of Particle Shape. Section 105.1: Flakiness Index; British Standards Institution: London, UK, 1989. [Google Scholar]
- BS 812-105.2; Testing Aggregates: Methods for Determination of Particle Shape. Elongation Index of Coarse Aggregate; British Standards Institution: London, UK, 1990.
- Astm-C-127; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. Word Press: Montclair, NJ, USA, 1993.
- BS 812-110; Testing Aggregates—Methods for Determination of Aggregate Crushing Value (ACV). British Standards Institution: London, UK, 1990.
- BS 812-112; Testing Aggregates. Method for Determination of Aggregate Impact Value (AIV). British Standards Institution: London, UK, 1990.
- C131/C131M; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International: West Conshohocken, PA, USA, 2018.
- C29/C29M-07; Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate. ASTM International: West Conshohocken, PA, USA, 2007.
- Adedeji, A.; Grünfelder, T.; Bates, F.S.; Macosko, C.; Stroup-Gardiner, M.; Newcomb, D. Asphalt modified by SBS triblock copolymer: Structures and properties. Polym. Eng. Sci. 1996, 36, 1707–1723. [Google Scholar] [CrossRef]
- ASTM D5581; Standard Test Method for Resistance to Plastic Flow of Bituminous Mixtures using Marshall Apparatus. American Society for Testing and Materials-ASTM International: West Conshohocken, PA, USA, 2014.
- Kalyoncuoglu, S.F.; Tigdemir, M. An alternative approach for modelling and simulation of traffic data: Artificial neural networks. Simul. Modell. Pract. Theory 2004, 12, 351–362. [Google Scholar] [CrossRef]
- Garson, D.G. Interpreting Neural Network Connection Weights; Expert.ai: Modena, Italy, 1991. [Google Scholar]
- Gibson, N.H. A Viscoelastoplastic Continuum Damage Model for the Compressive Behavior of Asphalt Concrete. Doctoral Dissertation, University of Maryland, College Park, MD, USA, 2006. [Google Scholar]
- Goh, A.T. Seismic liquefaction potential assessed by neural networks. J. Geotech. Eng. 1994, 120, 1467–1480. [Google Scholar] [CrossRef]
- Kalantar, Z.N.; Karim, M.R.; Mahrez, A. A review of using waste and virgin polymer in pavement. Constr. Build. Mater. 2012, 33, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Ling, M.; Luo, X.; Hu, S.; Gu, F.; Lytton, R.L. Numerical modeling and artificial neural network for predicting J-integral of top-down cracking in asphalt pavement. Transp. Res. Rec. 2017, 2631, 83–95. [Google Scholar] [CrossRef]
- Lapian, F.E.; Ramli, M.I.; Pasra, M.; Arsyad, A. The Performance Modeling of Modified Asbuton and Polyethylene Terephthalate (PET) Mixture Using Response Surface Methodology (RSM). Appl. Sci. 2021, 11, 6144. [Google Scholar] [CrossRef]
Test | Units | Results | Limits | Test Standard | Remarks |
---|---|---|---|---|---|
Bitumen (Binder) | |||||
Ductility @ 25 °C | cm | 95 | >75 | ASTM D-113 | ok |
Penetration @ 25 °C | mm | 64 | 60–70 | ASTM D-5 | |
Flash Point | °C | 302 | 232 min | ASTM D-92 | |
Softening Point | °C | 55 | 40–55 | ASTM D-36 | |
Aggregates | |||||
Water Absorption | % | 1.87 | <2 | ASTM C-127 | ok |
Specific Gravity | - | 2.27 | 2–3 | ||
Aggregate Crushing | % | 24 | <30 | BS 812-3 | |
Aggregate Impact Value | % | 19 | <27 | ||
Los Angeles Abrasion | % | 31 | <35 | ASTM C-131 | |
Bulk Density | kg/m3 | 1500 | - | ASTM C-29 | |
Elongation Index | % | 29.44 | <45 | BS 812-105.2 | |
Flakiness Index | % | 21 | <30 | BS 812-105.1 |
Factors | Units | Experimental Levels in BBD-Based RSM | |
---|---|---|---|
Low Level (−1) | High Level (+1) | ||
A: Polymer Type | - | 0 | 1 |
B: Polymer Content | % | 0 | 20 |
C: Testing Days | Day | 1 | 30 |
No. | Factors (Independent) | Response Variables | ||||
---|---|---|---|---|---|---|
X1: PT | X2: PC (%) | X3: Day | Y1: MS (kN) | Y2: MF (mm) | Y3: MS (kN/mm) | |
1 | 1 | 0 | 30 | 29.21 | 7.1 | 4.11 |
2 | 0 | 0 | 1 | 15.56 | 3.78 | 4.11 |
3 | 0 | 20 | 1 | 10.06 | 2.1 | 4.79 |
4 | 0 | 0 | 30 | 29.21 | 7.1 | 4.11 |
5 | 0 | 20 | 30 | 14.09 | 5.34 | 2.63 |
6 | 1 | 20 | 30 | 43.91 | 5.07 | 8.66 |
7 | 1 | 0 | 1 | 15.56 | 3.78 | 4.11 |
8 | 1 | 20 | 1 | 30.03 | 2.02 | 14.86 |
9 | 1 | 20 | 30 | 43.91 | 5.07 | 8.66 |
10 | 1 | 0 | 30 | 29.21 | 7.1 | 4.11 |
11 | 0 | 0 | 1 | 15.56 | 3.78 | 4.11 |
12 | 0 | 0 | 30 | 29.21 | 7.1 | 4.11 |
13 | 0 | 20 | 30 | 14.09 | 5.34 | 2.63 |
14 | 1 | 20 | 1 | 30.03 | 2.02 | 14.86 |
15 | 0 | 20 | 1 | 10.06 | 2.1 | 4.79 |
16 | 1 | 0 | 1 | 15.56 | 3.78 | 4.11 |
17 | 0 | 20 | 30 | 14.09 | 5.34 | 2.63 |
18 | 0 | 20 | 1 | 10.06 | 2.1 | 4.79 |
19 | 1 | 20 | 30 | 43.91 | 5.07 | 8.66 |
20 | 1 | 20 | 1 | 30.03 | 2.02 | 14.86 |
21 | 1 | 0 | 1 | 15.56 | 3.78 | 4.11 |
22 | 0 | 0 | 30 | 29.21 | 7.1 | 4.11 |
23 | 1 | 0 | 30 | 29.21 | 7.1 | 4.11 |
24 | 0 | 0 | 1 | 15.56 | 3.78 | 4.11 |
Responses-Y | Factors | Sum of Sq. | dF | Mean Sq. | F-Value | p-Value | Significant |
---|---|---|---|---|---|---|---|
Y1: MS (kN) | Model | 28.93 | 6 | 4.82 | 605.04 | <0.0001 | Yes |
A: Polymer Type | 10.07 | 1 | 10.07 | 1263.17 | <0.0001 | * | |
B: Polymer Content | 0.0417 | 1 | 0.0417 | 5.23 | 0.0372 | * | |
C: Testing Days | 8.10 | 1 | 8.10 | 1016.83 | <0.0001 | * | |
AB | 10.07 | 1 | 10.07 | 1263.17 | <0.0001 | * | |
AC | 0.1195 | 1 | 0.1195 | 15.00 | 0.0015 | ** | |
BC | 0.5325 | 1 | 0.5325 | 66.82 | <0.0001 | * | |
Residual | 0.1195 | 15 | 0.0080 | ||||
Y2: MF (mm) | Model | 4.90 | 6 | 0.8174 | 33,359.91 | <0.0001 | Yes |
A: Polymer Type | 0.0028 | 1 | 0.0028 | 115.96 | <0.0001 | * | |
B: Polymer Content | 1.19 | 1 | 1.19 | 48,744.70 | <0.0001 | * | |
C: Testing Days | 3.68 | 1 | 3.68 | 1.502 × 105 | <0.0001 | * | |
AB | 0.0028 | 1 | 0.0028 | 115.96 | <0.0001 | * | |
AC | 0.0004 | 1 | 0.0004 | 15.00 | 0.0015 | ** | |
BC | 0.0237 | 1 | 0.0237 | 967.11 | <0.0001 | * | |
Residual | 0.0004 | 15 | 0.0000 | ||||
Y3: MQ (kN/mm) | Model | 337.86 | 7 | 48.27 | 8.500 × 1011 | <0.0001 | Yes |
A: Polymer Type | 97.18 | 1 | 97.18 | 1.711 × 1012 | <0.0001 | * | |
B: Polymer Content | 78.79 | 1 | 78.79 | 1.388 × 1012 | <0.0001 | * | |
C: Testing Days | 26.22 | 1 | 26.22 | 4.618 × 1011 | <0.0001 | * | |
AB | 97.18 | 1 | 97.18 | 1.711 × 1012 | <0.0001 | * | |
AC | 6.16 | 1 | 6.16 | 1.085 × 1011 | <0.0001 | * | |
BC | 26.16 | 1 | 26.16 | 4.608 × 1011 | <0.0001 | * | |
ABC | 6.16 | 1 | 6.16 | 1.085 × 1011 | <0.0001 | * | |
Residual | 7.950 × 10−10 | 14 | 5.678 × 10−11 |
Y: Responses | Optimal Factors in BBD-Based RSM | Optimal Y-Values | |||
---|---|---|---|---|---|
X1: PT | X2: PC (%) | X3: Testing Day | Predicted | Experimental | |
Y1: MS (kN) | 0.98 | 20 | 30 | 42.98 | 43.84 ± 0.30 |
Y2: MF (mm) | 1 | 20 | 30 | 5.08 | 4.61 ± 0.18 |
Y3: MQ (kN/mm) | 1 | 20 | 29.5 | 8.75 | 8.68 ± 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mushtaq, F.; Huang, Z.; Shah, S.A.R.; Zhang, Y.; Gao, Y.; Azab, M.; Hussain, S.; Anwar, M.K. Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts. Polymers 2022, 14, 2493. https://doi.org/10.3390/polym14122493
Mushtaq F, Huang Z, Shah SAR, Zhang Y, Gao Y, Azab M, Hussain S, Anwar MK. Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts. Polymers. 2022; 14(12):2493. https://doi.org/10.3390/polym14122493
Chicago/Turabian StyleMushtaq, Faizan, Zhian Huang, Syyed Adnan Raheel Shah, Yinghua Zhang, Yukun Gao, Marc Azab, Sajid Hussain, and Muhammad Kashif Anwar. 2022. "Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts" Polymers 14, no. 12: 2493. https://doi.org/10.3390/polym14122493
APA StyleMushtaq, F., Huang, Z., Shah, S. A. R., Zhang, Y., Gao, Y., Azab, M., Hussain, S., & Anwar, M. K. (2022). Performance Optimization Approach of Polymer Modified Asphalt Mixtures with PET and PE Wastes: A Safety Study for Utilizing Eco-Friendly Circular Economy-Based SDGs Concepts. Polymers, 14(12), 2493. https://doi.org/10.3390/polym14122493