Development of an Antibacterial Dentin Adhesive
Abstract
:1. Introduction
2. Materials and Methods
2.1. Adhesive Preparation
- Control group: control adhesive (without nisin);
- Group 1%: nisin-doped adhesive with incorporation of 1 wt% nisin;
- Group 3%: nisin-doped adhesive with incorporation of 3 wt% nisin;
- Group 5%: nisin-doped adhesive with incorporation of 5 wt% nisin.
2.2. Antibacterial Activities
2.3. Degree of Conversion
2.4. Microtensile Bond Strength (µTBS)
2.5. Scanning Electron Microscopy Examination
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, S.; Niu, L.; Li, F.; Fang, M.; Zhang, L.; Tay, F.; Imazato, S.; Chen, J. Adhesive Materials with Bioprotective/Biopromoting Functions. Curr Oral Health Rep. 2014, 1, 213–221. [Google Scholar] [CrossRef] [Green Version]
- Nedeljkovic, I.; De Munck, J.; Vanloy, A.; Declerck, D.; Lambrechts, P.; Peumans, M.; Teughels, W.; Van Meerbeek, B.; Van Landuyt, K.L. Secondary caries: Prevalence, characteristics, and approach. Clin Oral Investig. 2020, 24, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Sarikaya, R.; Song, L.; Yuca, E.; Xie, S.; Boone, K.; Misra, A.; Spencer, P.; Tamerler, C. Bio-inspired multifunctional adhesive system for next generation bio-addivitely designed dental restorations. J. Mech. Behav. Biomed. Mater. 2021, 113, 104135. [Google Scholar] [CrossRef]
- Dressano, D.; Salvador, M.V.; Oliveira, M.T.; Marchi, G.M.; Fronza, B.M.; Hadis, M.; Palin, W.M.; Lima, A.F. Chemistry of novel and contemporary resin-based dental adhesives. J. Mech. Behav. Biomed. Mater. 2020, 110, 103875. [Google Scholar] [CrossRef] [PubMed]
- Perdigão, J. Current perspectives on dental adhesion: (1) Dentin adhesion–not there yet. Jap Dent Sci Rev. 2020, 56, 190–207. [Google Scholar] [CrossRef] [PubMed]
- Spencer, P.; Ye, Q.; Park, J.; Misra, A.; Bohaty, B.S.; Singh, V.; Parthasarathy, R.; Sene, F.; Gonçalves, S.; Laurence, J. Durable bonds at the adhesive/dentin interface: An impossible mission or simply a moving target? Braz Dent Sci. 2012, 15, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yu, X.; Liu, F.; Deng, F.; He, J. Synthesis of antibacterial dimethacrylate derived from niacin and its application in preparing antibacterial dental resin system. J Mech Behav Biomed Mater. 2020, 102, 103521. [Google Scholar] [CrossRef]
- Barcellos, D.C.; Fonseca, B.M.; Pucci, C.R.; Cavalcanti, B.; Persici, E.D.S.; Gonçalves, S.E.D.P. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties. Dent Mater. 2016, 32, 940–950. [Google Scholar] [CrossRef] [Green Version]
- Gou, Y.-P.; Meghil, M.; Pucci, C.R.; Breschi, L.; Pashley, D.H.; Cutler, C.W.; Niu, L.-N.; Li, J.-Y.; Tay, F.R. Optimizing resin-dentin bond stability using a bioactive adhesive with concomitant antibacterial properties and anti-proteolytic activities. Acta Biomater. 2018, 75, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, B.M.; Barcellos, D.C.; Da Silva, T.M.; Borges, A.L.S.; Cavalcanti, B.D.N.; Prakki, A.; De Oliveira, H.P.M.; Gonçalves, S.E.D.P. Mechanical-physicochemical properties and biocompatibility of catechin-incorporated adhesive resins. J. Appl. Oral Sci. 2019, 27. [Google Scholar] [CrossRef]
- Rezaeian, Z.; Beigi-Boroujeni, S.; Atai, M.; Ebrahimibagha, M.; Özcan, M. A novel thymol-doped enamel bonding system: Physico-mechanical properties, bonding strength, and biological activity. J. Mech. Behav. Biomed. Mater. 2019, 100, 103378. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Yao, S.; Gu, L.; Huang, Z.; Mai, S. Antibacterial effect and bond strength of a modified dental adhesive containing the peptide nisin. Peptides 2018, 99, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Qu, Y.; Liu, J.; Mai, S.; Gu, L. A universal adhesive incorporating antimicrobial peptide nisin: Effects on Streptococcus mutans and saliva-derived multispecies biofilms. Odontology 2020, 108, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Cotter, P.D.; Ross, R.P.; Hill, C. Bioengineering of the model lantibiotic nisin. Bioengineered 2015, 6, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.M.; Gwak, J.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016, 120, 1449–1465. [Google Scholar] [CrossRef] [Green Version]
- Jancic, U.; Gorgieva, S. Bromelain and nisin: The natural antimicrobials with high potential in biomedicine. Pharmaceutics. 2021, 14, 76. [Google Scholar] [CrossRef]
- Pepperney, A.; Chikindas, M.L. Antibacterial Peptides: Opportunities for the Prevention and Treatment of Dental Caries. Probiotics Antimicrob. Proteins 2011, 3, 68–96. [Google Scholar] [CrossRef]
- Tong, Z.; Dong, L.; Zhou, L.; Tao, R.; Ni, L. Nisin inhibits dental caries-associated microorganism in vitro. Peptides 2010, 31, 2003–2008. [Google Scholar] [CrossRef]
- Le Lay, C.; Akerey, B.; Fliss, I.; Subirade, M.; Rouabhia, M. Nisin Z inhibits the growth of Candida albicans and its transition from blastospore to hyphal form. J. Appl. Microbiol. 2008, 105, 1630–1639. [Google Scholar] [CrossRef]
- Buchman, G.W.; Banerjee, S.; Hansen, J.N. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem. 1988, 263, 16260–16266. [Google Scholar] [CrossRef]
- Norouzi, Z.; Salimi, A.; Halabian, R.; Fahimi, H. Nisin, a potent bacteriocin and anti-bacterial peptide, attenuates expression of metastatic genes in colorectal cancer cell lines. Microb. Pathog. 2018, 123, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Zhou, L.; Jiang, W.; Kuang, R.; Li, J.; Tao, R.; Ni, L. An in vitro synergetic evaluation of the use of nisin and sodium fluoride or chlorhexidine against Streptococcus mutans. Peptides 2011, 32, 2021–2026. [Google Scholar] [CrossRef] [PubMed]
- Zafar, M.S.; Ahmed, N. The effects of acid etching time on surface mechanical properties of dental hard tissues. Dent. Mater. J. 2015, 34, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Tong, H.; Yu, X.; Shi, Z.; Liu, F.; Yu, Y.; Deng, F.; He, J. Physicochemical properties, bond strength and dual-species biofilm inhibition effect of dental resin composites with branched silicone methacrylate. J. Mech. Behav. Biomed. Mater. 2021, 116, 104368. [Google Scholar] [CrossRef] [PubMed]
- Lindquist, B.; Emilson, C. Distribution and Prevalence of Mutans Streptococci in the Human Dentition. J. Dent. Res. 1990, 69, 1160–1166. [Google Scholar] [CrossRef]
- Breukink, E.; De Kruijff, B. Lipid II as a target for antibiotics. Nat. Rev. Drug Discov. 2006, 5, 321–323. [Google Scholar] [CrossRef]
- Peschel, A.; Sahl, H.-G. The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat. Rev. Genet. 2006, 4, 529–536. [Google Scholar] [CrossRef]
- Pag, U.; Sahl, H.-G. Multiple activities in lantibiotics—Models for the design of novel antibiotics? Curr. Pharm. Des 2002, 8, 815–833. [Google Scholar] [CrossRef]
- Gravesen, A.; Jydegaard Axelsen, A.-M.; Mendes, D.S.; Hansen, T.B.; Knochel, S. Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl. Environ. Microbiol. 2002, 68, 756–764. [Google Scholar] [CrossRef] [Green Version]
- Rollema, H.S.; Kuipers, O.P.; Both, P.; De Vos, W.M.; Siezen, R.J. Improvement of solubility and stability of the antimicrobial peptide nisin by protein engineering. Appl. Environ. Microbiol. 1995, 61, 2873–2878. [Google Scholar] [CrossRef] [Green Version]
- Parente, E.; Giglio, M.A.; Ricciardi, A.; Clementi, F. The combined effect of nisin, leucocin F10, pH, NaCl and EDTA on the survival of Listeria monocytogenes in broth. Int. J. Food Microbiol. 1998, 40, 65–75. [Google Scholar] [CrossRef]
- Franco, E.B.; Lopes, L.G.; D’Alpino, P.H.P.; Pereira, J.C. Influence of pH of different adhesive systems on the polymerization of a chemically cured composite resin. Braz. Dent. J. 2005, 16, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Wendl, B.; Droschl, H.; Kern, W. A comparative study of polymerization lamps to determine the degree of cure of composites using infrared spectroscopy. Eur. J. Orthod. 2004, 26, 545–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, K.-I.; Zendo, T.; Sugimoto, S.; Iwase, T.; Tajima, A.; Yamada, S.; Sonomoto, K.; Mizunoe, Y. Effects of Bacteriocins on Methicillin-Resistant Staphylococcus aureus Biofilm. Antimicrob. Agents Chemother. 2013, 57, 5572–5579. [Google Scholar] [CrossRef] [Green Version]
- Pucci, C.R.; Gu, L.-S.; Zhang, H.-Y.; Song, Q.; Xia, V.W.; Davis, L.B.; Andrade, D.D.S.; Mazzoni, A.; Breschi, L.; Pashley, D.H.; et al. Water-associated attributes in the contemporary dentin bonding milieu. J. Dent. 2018, 74, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Pucci, C.R.; de Oliveira, R.S.; Caneppele, T.M.; Torres, C.R.; Borges, A.B.; Tay, F.R. Effects of surface treatment, hydration and application method on the bond strength of a silorane adhesive and resin system to dentine. J. Dent. 2013, 41, 278–286. [Google Scholar] [CrossRef]
- Suzuki, S.; Ori, T.; Saimi, Y. Effects of filler composition on flexibility of microfilled resin composite. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 74B, 547–552. [Google Scholar] [CrossRef]
- Neri, J.R.; Yamauti, M.; Feitosa, V.; Pires, A.P.M.; Araújo, R.D.S.; Santiago, S.L. Physicochemical Properties of a Methacrylate-Based Dental Adhesive Incorporated with Epigallocatechin-3-gallate. Braz. Dent. J. 2014, 25, 528–531. [Google Scholar] [CrossRef] [Green Version]
- Van Meerbeek, B.; Yoshihara, K.; van Landuyt, K.; Yoshida, Y.; Peumans, M. From Buonocore’s Pioneering Acid-Etch Technique to Self-Adhering Restoratives. A Status Perspective of Rapidly Advancing Dental Adhesive Technology. J. Adhes. Dent. 2020, 22, 7–34. [Google Scholar] [CrossRef]
Adhesive | Composition | Manufacturer |
---|---|---|
AdperTM Single Bond 2 Lot: 2129900256 | HEMA, water, ethanol, amines, Bis-GMA, methacrylate-functional, policarboxylic acid, dimethacrylates, silanated colloidal | 3M ESPE, St. Paul, MN, USA |
Groups | CFUs (± SD) * | % Degree of Conversion (±SD) * | MPa (± SD) * |
---|---|---|---|
Control | 0.51 × 107 (±0.01) a | 83.5 (±3.4) a | 38.3 (±2.3) a |
1.0% | 0.36 × 107 (±0.03) b | 78.4 (±0.9) a | 35.6 (±2.1) a |
3.0% | 0.34 × 107 (±0.02) b | 52.6 (±7.2) b | 22.3 (±1.0) c |
5.0% | 0.33 × 107 (±0.04) b | 58.3 (±12.1) b | 27.1 (±1.6) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, S.R.; Matuda, A.G.N.; Campos, R.P.; Mafetano, A.P.V.P.; Barnabe, A.H.M.; Chagas, G.S.; Barcellos, D.C.; Niu, L.-N.; Tay, F.R.; Pucci, C.R. Development of an Antibacterial Dentin Adhesive. Polymers 2022, 14, 2502. https://doi.org/10.3390/polym14122502
Lopes SR, Matuda AGN, Campos RP, Mafetano APVP, Barnabe AHM, Chagas GS, Barcellos DC, Niu L-N, Tay FR, Pucci CR. Development of an Antibacterial Dentin Adhesive. Polymers. 2022; 14(12):2502. https://doi.org/10.3390/polym14122502
Chicago/Turabian StyleLopes, Stephanie R., Amanda G. N. Matuda, Raquel P. Campos, Ana Paula V. P. Mafetano, Ana Helena M. Barnabe, Gabriela S. Chagas, Daphne C. Barcellos, Li-Na Niu, Franklin R. Tay, and Cesar R. Pucci. 2022. "Development of an Antibacterial Dentin Adhesive" Polymers 14, no. 12: 2502. https://doi.org/10.3390/polym14122502
APA StyleLopes, S. R., Matuda, A. G. N., Campos, R. P., Mafetano, A. P. V. P., Barnabe, A. H. M., Chagas, G. S., Barcellos, D. C., Niu, L. -N., Tay, F. R., & Pucci, C. R. (2022). Development of an Antibacterial Dentin Adhesive. Polymers, 14(12), 2502. https://doi.org/10.3390/polym14122502