Effects of Thermochromic Fluorane Microcapsules and Self-Repairing Waterborne Acrylic Microcapsules on the Properties of Water-Based Coatings on Basswood Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Preparation Method of UF @ Waterborne Acrylic Resin Microcapsules
2.3. Preparation Method of Thermochromic Self-Repairing Bifunctional Coating
2.4. Testing and Characterization
3. Results and Discussion
3.1. Properties and Morphology of UF @ Waterborne Acrylic Resin Microcapsules
3.2. Orthogonal Experimental Analysis
3.3. Single Factor Experimental Results and Analysis of “Fluorane Microcapsule Content”
3.3.1. Effect of Fluorane Microcapsule Content on Optical Properties of Coating
3.3.2. Effect of Fluorane Microcapsule Content on Mechanical Properties of Coating
3.4. Microstructure and Infrared Spectrum Analysis
3.5. Self-Repairing Property
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stanciu, M.D.; Draghicescu, H.T.; Tamas, F.; Terciu, O.M. Mechanical and rheological behaviour of composites reinforced with natural fibres. Polymers 2020, 12, 1402. [Google Scholar] [CrossRef]
- Hu, W.G.; Liu, N.; Xu, L.; Guan, H.Y. Study on cold/warm sensation of materials used in desktop of furniture. Wood Res-Slovakia. 2020, 65, 497–506. [Google Scholar] [CrossRef]
- Hu, W.G.; Wan, H. Comparative study on weathering durability property of phenol formaldehyde resin modified sweetgum andsouthern pine specimens. Maderas-Ciencia Technol. 2022, 24, 17. [Google Scholar]
- Autengruber, M.; Lukacevic, M.; Grostlinger, C.; Fussl, J. Finite-element-based prediction of moisture-induced crack patterns for cross sections of solid wood and glued laminated timber exposed to a realistic climate condition. Constr. Build. Mater. 2021, 271, 121775. [Google Scholar] [CrossRef]
- Kong, Y.; Tian, X.B.; Gong, C.Z.; Chu, P.K. Enhancement of toughness and wear resistance by CrN/CrCN multilayered coatings for wood processing. Surf. Coat. Technol. 2018, 344, 204–213. [Google Scholar] [CrossRef]
- Niu, K.R.; Song, K.Y. Surface coating and interfacial properties of hot-waxed wood using modified polyethylene wax. Prog. Org. Coat. 2021, 150, 105947. [Google Scholar] [CrossRef]
- Hu, W.G.; Zhang, J.L. Effect of growth rings on acoustic emission characteristic signals of southern yellow pine wood cracked in mode I. Constr. Build. Mater. 2022, 329, 127092. [Google Scholar] [CrossRef]
- Hu, W.G.; Liu, Y.; Li, S. Characterizing mode I fracture behaviors of wood using compact tension in selected system crack propagation. Forests 2021, 12, 1369. [Google Scholar] [CrossRef]
- Yuan, H.Z.; Li, G.X.; Yang, L.J.; Yan, X.J.; Yang, D.B. Development of melamine-formaldehyde resin microcapsules with low formaldehyde emission suited for seed treatment. Colloids Surface B 2015, 128, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Chen, Y.P.; Lyu, S.Y.; Chen, Z.L.; Wang, S.Q.; Fu, F. Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization. Colloids Surface B 2019, 585, 124046. [Google Scholar] [CrossRef]
- Uzoma, P.C.; Liu, F.C.; Han, E.H. Multi-stimuli-triggered and self-repairable fluorocarbon organic coatings with urea-formaldehyde microcapsules filled with fluorosilane. J. Mater. Sci. Technol. 2020, 45, 70–83. [Google Scholar] [CrossRef]
- Fang, L.; Xiong, X.Q.; Wang, X.H.; Chen, H.; Mo, X.F. Effects of surface modification methods on mechanical and interfacial properties of high-density polyethylene-bonded wood veneer composites. J. Wood Sci. 2019, 63, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Rochefort, D. Characterisation and applications of microcapsules obtained by interfacial polycondensation. J. Microencapsul 2012, 29, 636–649. [Google Scholar] [CrossRef]
- Cho, S.H.; White, S.R.; Braun, P.V. Self-Healing polymer coatings. Adv. Mater. 2009, 6, 645–649. [Google Scholar] [CrossRef]
- Samadzadeh, M.; Boura, S.H.; Peikari, M.; Kasiriha, S.M.; Ashrafi, A. A review on self-healing coatings based on micro/nanocapsules. Prog. Org. Coat. 2010, 68, 159–164. [Google Scholar] [CrossRef]
- Jiao, C.Y.; Shao, Q.; Song, J.Y.; Hu, Q.; Naik, N.; Guo, Z.H. Advances in waterborne acrylic resins: Synthesis principle, modification strategies, and their applications. Acs. Omega 2021, 6, 2443–2449. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Chen, M.; Wu, L.M. Synthesis of UV-responsive dual-functional microspheres for highly efficient self-healing coatings. Chem. Eng. J. 2021, 422, 130034. [Google Scholar] [CrossRef]
- Wang, L.H.; Luo, B.; Wu, D.N.; Liu, Y.; Li, L.; Liu, H.G. Fabrication and characterization of thermal-responsive biomimetic small-scale shape memory wood composites with high tensile strength, high anisotropy. Polymers 2019, 11, 1892. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Tso, C.Y.; Du, Y.W.; Chao, L.C.; Lee, H.H.; Ho, T.C.; Leung, M.K.H. Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows. Appl. Energy 2021, 297, 117207. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, D.; Xu, W. Effect of paint process on the performance of modified poplar wood antique. Coatings 2021, 11, 1174. [Google Scholar] [CrossRef]
- Xie, P.; Wang, K.; Deng, J.; Luo, G.S. Continuous, homogeneous and rapid synthesis of 4-bromo-3-methylanisole in a modular microreaction system. Chin. J. Chem. Eng. 2020, 28, 2092–2098. [Google Scholar] [CrossRef]
- Peng, G.J.; Dou, G.J.; Hu, Y.H.; Sun, Y.H.; Chen, Z.T. Phase change material (PCM) microcapsules for thermal energy storage. Adv. Polym. Technol. 2020, 2020, 9490873. [Google Scholar] [CrossRef]
- Zhao, H.B.; Fei, X.N.; Cao, L.Y.; Zhao, S.X.; Zhou, J.G. Changes in microcapsules under heating: The effect of particle size on thermal stability and breakability. J. Mater. Sci. 2020, 55, 3902–3911. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Gao, D.; Xu, W. Influence of the bottom color modification and material color modification process on the performance of modified Poplar. Coatings 2021, 11, 660. [Google Scholar] [CrossRef]
- Yan, X.X.; Chang, Y.J. Investigation of waterborne thermochromic topcoat film with color-changing microcapsules on Chinese fir surface. Prog. Org. Coat. 2019, 136, 105262. [Google Scholar] [CrossRef]
- Zhu, X.D.; Liu, Y.; Li, Z.; Wang, W.C. Thermochromic microcapsules with highly transparent shells obtained through in-situ polymerization of urea-formaldehyde around thermochromic cores for smart wood coatings. Sci. Rep. 2018, 8, 4015. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.I.; Wang, Q.Y.; Ali, A.; Hussain, M.; Aziz, T.; Zhan, X.L.; Zhang, Q.H. Slippery photothermal trap for outstanding deicing surfaces. J. Bionic Egn. 2021, 18, 548–558. [Google Scholar] [CrossRef]
- Aziz, T.; Fan, H.; Haq, F.; Khan, F.U.; Numan, A.; Iqbal, M.; Raheel, M.; Kiran, M.; Wazir, N. Adhesive properties of poly (methyl silsesquioxanes)/bio-based epoxy nanocomposites. Iran. Polym. J. 2020, 29, 911–918. [Google Scholar] [CrossRef]
- Ahmed, N.; Fan, H.; Dubois, P.; Zhang, X.W.; Fahad, S.; Aziz, T.; Wan, J.T. Nano-engineering and micromolecular science of polysilsesquioxane materials and their emerging applications. J. Mater. Chen. A 2019, 7, 21577–21604. [Google Scholar] [CrossRef]
- Yan, X.X.; Peng, W.W. Preparation of microcapsules of urea formaldehyde resin coated waterborne coatings and their effect on properties of wood crackle coating. Coatings 2020, 10, 764. [Google Scholar] [CrossRef]
- Xue, D.; Meng, Q.B.; Lu, Y.X.; Liang, L.; Wei, Y.H.; Liu, X.B. Achieving high performance anticorrosive coating via in situ polymerization of polyurethane and poly (propylene oxide) grafted graphene oxide composites. Corros. Sci. 2020, 176, 109055. [Google Scholar] [CrossRef]
- Tong, X.M.; Zhang, T.; Yang, M.Z.; Zhang, Q.A. Preparation and characterization of novel melamine modified poly(urea-formaldehyde) self-repairing microcapsules. Colloids Surface A 2010, 371, 91–97. [Google Scholar] [CrossRef]
- Zuev, V.V.; Lee, J.; Kostromin, S.V.; Bronnikov, S.V.; Bhattacharyya, D. Statistical analysis of the self-healing epoxy-loaded microcapsules across their synthesis. Mater. Lett. 2013, 94, 79–82. [Google Scholar] [CrossRef]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H.R.; Papadopoulos, A.N.; et al. Recent progress in ultra-low formaldehyde emitting adhesive systems and formaldehyde scavengers in wood-based panels: A review. Wood Mater. Sci. Eng. 2022, 1–20. [Google Scholar] [CrossRef]
- Paiva, N.T.; Henriques, A.; Cruz, P.; Ferra, J.M.; Carvalho, L.H.; Magalhaes, F.D. Production of melamine fortified urea-formaldehyde resins with low formaldehyde emission. J. Appl. Polym. Sci. 2012, 124, 2311–2317. [Google Scholar] [CrossRef]
- Yan, X.X.; Zhao, W.T.; Wang, L. Preparation and performance of thermochromic and self-repairing dual function paint film with lac resin microcapsules and fluorane microcapsules. Polymers 2021, 13, 3109. [Google Scholar] [CrossRef]
- Xu, W.; Fang, X.; Han, J.; Wu, Z. Effect of coating thickness on sound absorption property of four wood species commonly used for piano soundboards. Wood Fiber Sci. 2020, 52, 28–43. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Gao, D.; Xu, W. Effect of sanding processes on the surface properties of modified poplar coated by primer compared with mahogany. Coatings 2020, 10, 856. [Google Scholar] [CrossRef]
- Lu, Z.G.; Wang, H.Y.; Tan, J.B.; Ma, L.M.; Lin, S. Achieving an ultra-uniform diffraction pattern of stray light with metallic meshes by using ring and sub-ring arrays. Opt. Lett. 2016, 41, 1941–1944. [Google Scholar] [CrossRef]
- Jeong, B.; Park, B.D.; Causin, V. Influence of synthesis method and melamine content of urea-melamine-formaldehyde resins to their features in cohesion, interphase, and adhesion. J. Ing. Eng. Chem. 2016, 41, 1941–1944. [Google Scholar] [CrossRef]
- Jiao, C.Y.; Shao, Q.; Wu, M.Y.; Zheng, B.; Guo, Z.; Yi, J.M.; Zhang, J.X.; Lin, J.; Wu, S.D.; Dong, M.Y. 2-(3,4-Epoxy) ethyltriethoxysilane-modified waterborne acrylic resin: Preparation and property analysis. Polymers 2020, 190, 122196. [Google Scholar] [CrossRef]
- Alam, M.N.E.; Rahman, M.; Basher, M.K.; Vasiliev, M.; Alameh, K. Optical and chromaticity properties of metal-dielectric composite-based multilayer thin-film structures prepared by RF magnetron sputtering. Coatings 2020, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Tao, X.; Xu, W. Thermal conductivity of Poplar wood veneer impregnated with graphene/polyvinyl alcohol. Forests 2021, 12, 777. [Google Scholar] [CrossRef]
- Yong, Q.W.; Xu, D.; Liu, Q.; Xiao, Y.; Wei, D.D. Advances in polymer-based matte coatings: A review. Polym. Advan. Technol. 2022, 33, 5–19. [Google Scholar] [CrossRef]
- Dong, F.; Meschter, S.J.; Nozaki, S.; Ohshima, T.; Makino, T.; Cho, J. Effect of coating adhesion and degradation on tin whisker mitigation of polyurethane-based conformal coatings. Polym. Degrad. Stabil. 2021, 166, 219–229. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, Y.; Xu, W.; Lu, T.; Li, W.; Fan, H. Compressive properties of green velvet material used in mattress bedding. Appl. Sci. 2021, 11, 11159. [Google Scholar] [CrossRef]
- Chen, B.R.; Yu, X.J.; Hu, W.G. Experimental and numerical studies on the cantilevered leg joint and its reinforced version commonly used in modern wood furniture. BioResources 2022, 17, 3952–3964. [Google Scholar]
- Seyedlar, R.M.; Imani, M.; Mirabedini, S.M. Bio-based furan coatings: Adhesion, mechanical and thermal properties. Polym. Bull. 2021, 78, 577–599. [Google Scholar] [CrossRef]
- Xu, W.; Chen, P.; Yang, Y.; Wang, X.; Liu, X. Effects of freezing and steam treatments on the permeability of populus tomentosa. Materialwiss. Werkst. 2021, 52, 907–915. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, W.; Liu, X.; Wang, X. Study on permeability of Cunninghamia Lanceolata based on steam treatment and freeze treatment. Wood Res. 2021, 66, 721–731. [Google Scholar] [CrossRef]
- Yan, X.X.; Zhao, W.T.; Wang, L. Mechanism of thermochromic and self-repairing of waterborne wood coatings by synergistic action of waterborne acrylic microcapsules and fluorane microcapsules. Polymers 2022, 14, 56. [Google Scholar] [CrossRef] [PubMed]
Experimental Materials | Purity | Manufacturer |
---|---|---|
37.0% formaldehyde | analytically pure | Nanjing Chemical Reagent Co., Ltd., Nanjing, China |
urea | analytically pure | Nanjing Chemical Reagent Co., Ltd., Nanjing, China |
triethanolamine | analytically pure | Nanjing Chemical Reagent Co., Ltd., Nanjing, China |
sodium dodecyl benzene sulfonate | analytically pure | Tianjin Beichen Fangzheng reagent factory, Tianjin, China |
n-octanol | analytically pure | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
citric acid monohydrate | analytically pure | Sinopharm Chemical Reagent Co., Ltd., Shanghai, China |
absolute ethanol | analytically pure | Suzhou Jiading Chemical Technology Co., Ltd., Suzhou, China |
ethyl acetate | analytically pure | Hubei handafei Biotechnology Co., Ltd., Hubei, China |
waterborne acrylic acid | - | Shanghai Dulux Co., Ltd., Shanghai, China |
Sample (#) | Content of Fluorane Microcapsule (%) | Content of Waterborne Acrylic Resin Microcapsules (%) | Addition Method of Fluorane Microcapsule |
---|---|---|---|
1# | 10.0 | 5.0 | Primer with fluorane microcapsules, and topcoat with waterborne acrylic resin microcapsules. |
2# | 10.0 | 15.0 | Topcoat with fluorane microcapsules, and primer with waterborne acrylic resin microcapsules. |
3# | 20.0 | 5.0 | Topcoat with fluorane microcapsules, and primer with waterborne acrylic resin microcapsules |
4# | 20.0 | 15.0 | Primer with fluorane microcapsules, and topcoat with waterborne acrylic resin microcapsules |
Sample (#) | Fluorane Microcapsules (%) | Waterborne Acrylic Resin Microcapsule (%) | Fluorane Microcapsules (g) | Waterborne Acrylic Resin Microcapsule (g) | Primer (g) | Topcoat (g) | Thermochromic Self-Repairing Coating (g) |
---|---|---|---|---|---|---|---|
1# | 10.0 | 5.0 | 0.2 | 0.1 | 1.8 | 1.9 | 4.0 |
2# | 10.0 | 15.0 | 0.2 | 0.3 | 1.7 | 1.8 | 4.0 |
3# | 20.0 | 5.0 | 0.4 | 0.1 | 1.9 | 1.6 | 4.0 |
4# | 20.0 | 15.0 | 1.4 | 0.3 | 1.6 | 1.7 | 4.0 |
5# | 0 | 15.0 | 0 | 0.3 | 1.7 | 2.0 | 4.0 |
6# | 5.0 | 15.0 | 0.1 | 0.3 | 1.7 | 1.9 | 4.0 |
7# | 15.0 | 15.0 | 0.3 | 0.3 | 1.7 | 1.7 | 4.0 |
8# | 20.0 | 15.0 | 0.4 | 0.3 | 1.7 | 1.6 | 4.0 |
9# | 25.0 | 15.0 | 0.5 | 0.3 | 1.7 | 1.5 | 4.0 |
10# | 30.0 | 15.0 | 0.6 | 0.3 | 1.7 | 1.4 | 4.0 |
11# | 15.0 | 0 | 0.3 | 0 | 2.0 | 1.7 | 4.0 |
Sample (#) | Chromatic Aberration | 16 °C | 18 °C | 20 °C | 22 °C | 24 °C | 26 °C | 28 °C | 30 °C | 32 °C | 34 °C | 36 °C | 38 °C | 40 °C |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | ΔE | 0 | 4.4 ± 0.1 | 8.5 ± 0.2 | 9.8 ± 0.1 | 9.7 ± 0.2 | 11.9 ± 0.2 | 15.3 ± 0.4 | 32.0 ± 0.8 | 53.9 ± 1.2 | 54.5 ±1.4 | 54.7 ± 1.4 | 54.9 ± 1.0 | 54.9 ± 1.0 |
2 | 0 | 2.4 ± 0.1 | 2.6 ± 0.1 | 3.9 ± 0.1 | 4.7 ± 0.1 | 10.4 ± 0.2 | 15.2 ± 0.4 | 35.1 ± 0.1 | 75.1 ± 0.8 | 75.2 ± 2.7 | 75.6 ± 2.1 | 75.8 ± 1.8 | 76.1 ± 1.5 | |
3 | 0 | 2.6 ± 0.1 | 7.7 ± 0.2 | 9.0 ± 0.2 | 10.3 ± 0.2 | 10.8 ± 0.4 | 14.3 ± 0.5 | 34.4 ± 0.9 | 77.0 ± 1.4 | 77.2 ± 2.7 | 78.0 ± 1.6 | 77.8 ± 2.0 | 78.4 ± 2.4 | |
4 | 0 | 5.7 ± 0.1 | 7.7 ± 0.2 | 10.8 ± 0.2 | 11.9 ± 0.1 | 11.9 ± 0.1 | 17.2 ± 0.5 | 36.0 ± 0.8 | 82.5 ± 1.0 | 83.4 ± 1.8 | 83.8 ± 1.6 | 83.7 ± 1.7 | 84.3 ± 1.7 |
Sample | Fluorane Microcapsule Content (%) | Content of Waterborne Acrylic resin Microcapsules (%) | Add Method | Temperature of 16–32 °C Color Difference Results |
---|---|---|---|---|
1# | 10.0 | 5.0 | Primer with fluorane microcapsules, and topcoat with waterborne acrylic resin microcapsules. | 53.9 ± 1.2 |
2# | 10.0 | 15.0 | Topcoat with fluorane microcapsules, and primer with waterborne acrylic resin microcapsules. | 75.1 ± 0.8 |
3# | 20.0 | 5.0 | Topcoat with fluorane microcapsules, and primer with waterborne acrylic resin microcapsules. | 77.0 ± 1.4 |
4# | 20.0 | 15.0 | Primer with fluorane microcapsules, and topcoat with waterborne acrylic resin microcapsules. | 82.5 ± 1.0 |
Mean 1 | 64.500 | 64.450 | 68.200 | |
Mean 2 | 79.750 | 78.800 | 76.050 | |
Range | 15.250 | 13.350 | 7.850 | |
Significance | - | - | - |
Sample (#) | Fluorane Microcapsule Content (%) | 20 ° Gloss (%) | 60 ° Gloss (%) | 85 ° Gloss (%) |
---|---|---|---|---|
5# | 0 | 5.9 ± 0.2 | 27.1 ± 0.8 | 40.8 ± 0.6 |
6# | 5.0 | 3.5 ± 0.2 | 14.5 ± 0.2 | 28.7 ± 0.3 |
2# | 10.0 | 2.0 | 5.2 ± 0.1 | 13.1 ± 0.1 |
7# | 15.0 | 1.6 ± 0.1 | 3.3 | 10.5 |
8# | 20.0 | 1.3 ± 0.1 | 2.5 | 12.6 |
9# | 25.0 | 1.3 ± 0.1 | 2.0 ± 0.1 | 7.7 ± 0.1 |
10# | 30.0 | 1.3 | 2.0 ± 0.2 | 8.0 ± 0.3 |
Sample (#) | Fluorane Microcapsule Content (%) | Hardness (H) | Adhesion (grade) | Impact Resistance (kg∙cm) | Elongation at Break (%) |
---|---|---|---|---|---|
5# | 0 | 2 | 0 | 9.0 ± 0.8 | 15.0 ± 0.1 |
6# | 5.0 | 3 | 0 | 10.0 ± 0.8 | 15.7 ± 0.8 |
2# | 10.0 | 3 | 0 | 12.0 ± 1.4 | 16.5 ± 0.4 |
7# | 15.0 | 4 | 0 | 15.0 ± 0.8 | 17.2 |
8# | 20.0 | 5 | 1 | 16.0 ± 1.2 | 9.1 ± 0.1 |
9# | 25.0 | 4 | 1 | 14.0 ± 0.8 | 7.2 |
10# | 30.0 | 4 | 1 | 14.0 ± 1.8 | 4.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, P.; Yan, X.; Wang, L. Effects of Thermochromic Fluorane Microcapsules and Self-Repairing Waterborne Acrylic Microcapsules on the Properties of Water-Based Coatings on Basswood Surface. Polymers 2022, 14, 2500. https://doi.org/10.3390/polym14122500
Pan P, Yan X, Wang L. Effects of Thermochromic Fluorane Microcapsules and Self-Repairing Waterborne Acrylic Microcapsules on the Properties of Water-Based Coatings on Basswood Surface. Polymers. 2022; 14(12):2500. https://doi.org/10.3390/polym14122500
Chicago/Turabian StylePan, Pan, Xiaoxing Yan, and Lin Wang. 2022. "Effects of Thermochromic Fluorane Microcapsules and Self-Repairing Waterborne Acrylic Microcapsules on the Properties of Water-Based Coatings on Basswood Surface" Polymers 14, no. 12: 2500. https://doi.org/10.3390/polym14122500
APA StylePan, P., Yan, X., & Wang, L. (2022). Effects of Thermochromic Fluorane Microcapsules and Self-Repairing Waterborne Acrylic Microcapsules on the Properties of Water-Based Coatings on Basswood Surface. Polymers, 14(12), 2500. https://doi.org/10.3390/polym14122500