It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams
Abstract
:1. Introduction
1.1. Polyurethane Foams (Flexible and Rigid)
1.2. Polyisocyanurate Foams and Polyurethane Foams
1.3. Flammability and Smoke Toxicity during Burning of Polyurethane Foams
1.4. Commercial Flame Retardants for PUFs
2. Task
2.1. Burning Behavior of Rigid and Flexible Polyurethane Foams
2.2. Role of Selecting Contents of Isocyanate, Polyol, Foaming Agent, and Flame Retardants
2.3. Effective Flame-Retardant Approaches
- (1)
- Flame inhibition + enhancement of melt flow and dripping
- (2)
- Charring + maintaining structural integrity
3. Burning Behavior of Polyurethane Foams with a Single Flame Retardant
3.1. Expandable Graphite
Flame-Retardant Performance Optimization of Expandable Graphite
3.2. Phosphorous Flame Retardant
Flame-Retardant Performance Optimization of Phosphorus
4. Mechanism of Synergistic Effect between Phosphorus and Expandable Graphite
5. Current and Future Tasks
5.1. Green Solutions for Flame Retardants
5.1.1. Natural Renewable Resources as Flame-Retardant Additives
5.1.2. Modification of Renewable Resources into Functional Flame Retardants
5.2. Green Solutions for Polyurethane Foams
6. Challenges and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schartel, B.; Kebelmann, K. Fire testing for the development of flame retardant polymeric materials. In Flame Retardant Polymeric Materials: A Handbook, 1st ed.; Hu, Y., Wang, X., Eds.; CRC Press: Boca Raton, FL, USA, 2020; pp. 35–55. [Google Scholar]
- Morgan, A.B.; Gilman, J.W. An overview of flame retardancy of polymeric materials: Application, technology, and future directions. Fire Mater. 2013, 37, 259–279. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced flame-retardant methods for polymeric materials. Adv. Mater. 2022, 2107905. [Google Scholar] [CrossRef] [PubMed]
- Schartel, B.; Perret, B.; Dittrich, B.; Ciesielski, M.; Krämer, J.; Müller, P.; Altstädt, V.; Zang, L.; Döring, M. Flame retardancy of polymers: The role of specific reactions in the condensed phase. Macromol. Mater. Eng. 2016, 301, 9–35. [Google Scholar] [CrossRef]
- Camino, G.; Costa, L.; Luda di Cortemiglia, M.P. Overview of fire retardant mechanisms. Polym. Degrad. Stabil. 1991, 33, 131–154. [Google Scholar] [CrossRef]
- Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J.M.; Dubois, P. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mat. Sci. Eng. R 2009, 63, 100–125. [Google Scholar] [CrossRef]
- Perret, B.; Pawlowski, K.H.; Schartel, B. Fire retardancy mechanisms of arylphosphates in polycarbonate (PC) and PC/acrylonitrile-butadiene-styrene. J. Therm. Anal. Calorim. 2009, 97, 949–958. [Google Scholar] [CrossRef]
- Schartel, B. Multicomponent flame retardants. In Non-Halogenated Flame Retardant Handbook, 2nd ed.; Morgan, A.B., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2022; pp. 413–474. [Google Scholar]
- Schartel, B.; Hull, T.R. Development of fire-retarded materials–Interpretation of cone calorimeter data. Fire Mater. 2007, 31, 327–354. [Google Scholar] [CrossRef]
- Weil, E.D.; Levchik, S.V. Flame retardants in commercial use or development for polyurethanes, polyisocyanurates, and polyureas. In Flame Retardants for Plastics and Textiles: Practical Applications, 2nd ed.; Weil, E.D., Levchik, S.V., Eds.; Hanser Publishers: Munich, Germany, 2016; pp. 205–230. [Google Scholar]
- Pang, X.Y.; Chang, R.; Weng, M.Q. Halogen-free flame retarded rigid polyurethane foam: The influence of titanium dioxide modified expandable graphite and ammonium polyphosphate on flame retardancy and thermal stability. Polym. Eng. Sci. 2018, 58, 2008–2018. [Google Scholar] [CrossRef]
- Yao, W.G.; Zhang, D.Y.; Zhang, Y.X.; Fu, T.; Guan, D.B.; Dou, Y.L. Synergistic flame retardant effects of expandable graphite and ammonium polyphosphate in water-blow polyurethane foam. Adv. Mater. Sci. Eng. 2019, 2019, 6921474. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.J.; Qian, L.K.; Xin, F. The synergistic flame-retardant behaviors of pentaerythritol phosphate and expandable graphite in rigid polyurethane foams. Polym. Compos. 2018, 39, 329–336. [Google Scholar] [CrossRef]
- Xu, W.Z.; Liu, L.; Wang, S.Q.; Hu, Y. Synergistic effect of expandable graphite and aluminum hypophosphite on flame-retardant properties of rigid polyurethane foam. J. Appl. Polym. Sci. 2015, 132, 42842. [Google Scholar] [CrossRef]
- Xu, J.S.; Wu, Y.Q.; Zhang, B.L.; Zhang, G.L. Synthesis and synergistic flame-retardant effects of rigid polyurethane foams used reactive DOPO-based polyols combination with expandable graphite. J. Appl. Polym. Sci. 2021, 138, 50223. [Google Scholar] [CrossRef]
- Feng, F.F.; Qian, L.J. The flame retardant behaviors and synergistic effect of expandable graphite and dimethyl methylphosphonate in rigid polyurethane foams. Polym. Compos. 2014, 35, 301–309. [Google Scholar] [CrossRef]
- Chen, X.Y.; Huang, Z.H.; Xi, X.Q.; Li, J.; Fan, X.Y.; Wang, Z. Synergistic effect of carbon and phosphorus flame retardants in rigid polyurethane foams. Fire Mater. 2018, 42, 447–453. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Ma, C.; Zhou, F.; Hu, Y.; Schartel, B. A liquid phosphorous flame retardant combined with expandable graphite or melamine in flexible polyurethane foam. Polym. Advan. Technol. 2022, 33, 326–339. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications–A review. Rsc. Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef] [Green Version]
- Gama, N.V.; Ferreira, A.; Barros-Timmons, A. Polyurethane foams: Past, present, and future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [Green Version]
- Szycher, M. Szycher’s Handbook of Polyurethanes, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Sardon, H.; Pascual, A.; Mecerreyes, D.; Taton, D.; Cramail, H.; Hedrick, J.L. Synthesis of polyurethanes using organocatalysis: A perspective. Macromolecules 2015, 48, 3153–3165. [Google Scholar] [CrossRef]
- Sonnenschein, M.F. Introduction to polyurethane chemistry. In Polyurethanes: Science, Technology, Markets, and Trends, 1st ed.; Sonnenschein, M.F., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 105–126. [Google Scholar]
- Olejnik, A.; Gosz, K.; Piszczyk, Ł. Kinetics of cross-linking processes of fast-curing polyurethane system. Thermochim. Acta 2020, 683, 178435. [Google Scholar] [CrossRef]
- Kirpluks, M.; Cabulis, U.; Avots, A. Flammability of bio-based rigid polyurethane foam as sustainable thermal insulation material. In Insulation Materials in Context of Sustainability; Almusaed, A., Almssad, A., Eds.; IntechOpen Limited: London, UK, 2016; pp. 85–111. [Google Scholar] [CrossRef] [Green Version]
- Günther, M.; Lorenzetti, A.; Schartel, B. From Cells to Residues: Flame-retarded rigid polyurethane foams. Combust. Sci. Technol. 2020, 192, 2209–2237. [Google Scholar] [CrossRef]
- Günther, M.; Lorenzetti, A.; Schartel, B. Fire phenomena of rigid polyurethane foams. Polymers 2018, 10, 1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engels, H.W.; Pirkl, H.G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Chem. Int. Ed. 2013, 52, 9422–9441. [Google Scholar] [CrossRef] [PubMed]
- Blasi, C.D. The burning plastics. In Plastics Flammability Handbook, 3rd ed.; Troitzsch, J., Ed.; Carl Hanser Verlag: Munich, Germany, 2004; pp. 47–132. [Google Scholar]
- Krämer, R.H.; Zammarano, M.; Linteris, G.T.; Gedde, U.W.; Gilman, J.W. Heat release and structural collapse of flexible polyurethane foam. Polym. Degrad. Stabil. 2010, 95, 1115–1122. [Google Scholar] [CrossRef]
- König, A.; Fehrenbacher, U.; Hirth, T.; Kroke, E. Flexible polyurethane foam with the flame-retardant melamine. J. Cell Plast. 2008, 44, 469–480. [Google Scholar] [CrossRef]
- Singh, H.; Jain, A.K. Ignition, combustion, toxicity and fire retardancy of polyurethane foams: A comprehensive review. J. Appl. Polym. Sci. 2009, 111, 1115–1143. [Google Scholar] [CrossRef]
- McKenna, S.T.; Hull, T.R. The fire toxicity of polyurethane foams. Fire Sci. Rev. 2016, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Levchik, S.V.; Weil, E.D. Recent progress in flame retardancy of polyurethane and polyisocyanurate foams. ACS Sym. Ser. 2006, 922, chap 22. 280–290. [Google Scholar] [CrossRef]
- Liu, W.; Li, F.; Ge, X.G.; Zhang, Z.J.; He, J.; Gao, N. Effect of DMMP on the pyrolysis products of polyurethane foam materials in gaseous phase. IOP Conf. Ser.-Mat. Sci. 2016, 137, 012037. [Google Scholar] [CrossRef] [Green Version]
- Akdogan, E.; Erdem, M.; Ureyen, M.E.; Kaya, M. Rigid polyurethane foams with halogen-free flame retardants: Thermal insulation, mechanical, and flame retardant properties. J. Appl. Polym. Sci. 2020, 137, 317–329. [Google Scholar] [CrossRef]
- Price, D.; Liu, Y.; Milnes, G.J.; Hull, R.; Kandola, B.K.; Horrocks, A.R. An investigation into the mechanism of flame retardancy and smoke suppression by melamine in flexible polyurethane foam. Fire Mater. 2002, 26, 201–206. [Google Scholar] [CrossRef]
- Lorenzetti, A.; Dittrich, B.; Schartel, B.; Roso, M.; Modesti, M. Expandable graphite in polyurethane foams: The effect of expansion volume and intercalants on flame retardancy. J. Appl. Polym. Sci. 2017, 134, 45173. [Google Scholar] [CrossRef]
- Ming, G.; Chen, S.; Sun, Y.J.; Wang, Y.X. Flame retardancy and thermal properties of flexible polyurethane foam containing expanded graphite. Combust. Sci. Technol. 2017, 189, 793–805. [Google Scholar] [CrossRef]
- Modesti, M.; Lorenzetti, A.; Simioni, F.; Camino, G. Expandable graphite as an intumescent flame retardant in polyisocyanurate-polyurethane foams. Polym. Degrad. Stabil. 2002, 77, 195–202. [Google Scholar] [CrossRef]
- Czech-Polak, J.; Przybyszewski, B.; Heneczkowski, M.; Czulak, A.; Gude, M. Effect of environmentally-friendly flame retardants on fire resistance and mechanical properties of rigid polyurethane foams. Polimery 2016, 61, 113–116. [Google Scholar] [CrossRef]
- Yang, H.Y.; Liu, H.Y.; Jiang, Y.P.; Chen, M.F.; Wan, C.J. Density effect on flame retardancy, thermal degradation, and combustibility of rigid polyurethane foam modified by expandable graphite or ammonium polyphosphate. Polymers 2019, 11, 668. [Google Scholar] [CrossRef] [Green Version]
- Schartel, B.; Wilkie, C.A.; Camino, G. Recommendations on the scientific approach to polymer flame retardancy: Part 2–Concepts. J. Fire Sci. 2017, 35, 3–20. [Google Scholar] [CrossRef]
- Li, L.S.; Chen, Y.J.; Wu, X.D.; Xu, B.; Qian, L.J. Bi-phase flame-retardant effect of dimethyl methylphosphonate and modified ammonium polyphosphate on rigid polyurethane foam. Polym. Advan. Technol. 2019, 30, 2721–2728. [Google Scholar] [CrossRef]
- Wang, C.; Wu, Y.C.; Li, Y.C.; Shao, Q.; Yan, X.R.; Han, C.; Wang, Z.; Liu, Z.; Guo, Z.H. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym. Advan. Technol. 2018, 29, 668–676. [Google Scholar] [CrossRef]
- Gómez-Fernández, S.; Günther, M.; Schartel, B.; Corcuera, M.A.; Eceiza, A. Impact of the combined use of layered double hydroxides, lignin and phosphorous polyol on the fire behavior of flexible polyurethane foams. Ind. Crop. Prod. 2018, 125, 346–359. [Google Scholar] [CrossRef]
- Gaan, S.; Liang, S.Y.; Mispreuve, H.; Perler, H.; Naescher, R.; Neisius, M. Flame retardant flexible polyurethane foams from novel DOPO-phosphonamidate additives. Polym. Degrad. Stabil. 2015, 113, 180–188. [Google Scholar] [CrossRef]
- Lefebvre, J.; Le Bras, M.; Bastin, B.; Paleja, R.; Delobel, R. Flexible polyurethane foams: Flammability. J. Fire Sci. 2003, 21, 343–367. [Google Scholar] [CrossRef]
- Günther, M.; Levchik, S.V.; Schartel, B. Bubbles and collapses: Fire phenomena of flame-retarded flexible polyurethane foams. Polym. Advan. Technol. 2020, 31, 2185–2198. [Google Scholar] [CrossRef]
- McKeen, P.; Liao, Z.Y. Pyrolysis model for predicting the fire behavior of flexible polyurethane foam. Build Simul.-China 2019, 12, 337–345. [Google Scholar] [CrossRef]
- Gharehbagh, A.; Ahmadi, Z. Polyurethane flexible foam fire behavior. In Polyurethane, 1st ed.; Zafar, F., Sharmin, E., Eds.; IntechOpen Limited: London, UK, 2012; pp. 101–120. [Google Scholar] [CrossRef] [Green Version]
- Modesti, M.; Lorenzetti, A. An experimental method for evaluating isocyanate conversion and trimer formation in polyisocyanate-polyurethane foams. Eur. Polym. J. 2001, 37, 949–954. [Google Scholar] [CrossRef]
- Dutta, A.S. Polyurethane foam chemistry. In Recycling of Polyurethane Foams; Thomas, S., Rane, A.V., Kanny, K., Abitha, V.K., Thomas, M.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 17–27. [Google Scholar]
- Choe, K.H.; Lee, D.S.; Seo, W.J.; Kim, W.N. Properties of rigid polyurethane foams with blowing agents and catalysts. Polym. J. 2004, 36, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Levchik, S.V. Introduction to flame retardancy and polymer flammability. In Flame Retardant Polymer Nanocomposites, 1st ed.; Morgan, A.B., Wilkie, C.A., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 1–29. [Google Scholar] [CrossRef] [Green Version]
- Velencoso, M.M.; Battig, A.; Markwart, J.C.; Schartel, B.; Wurm, F.R. Molecular firefighting–How modern phosphorus chemistry can help solve the challenge of flame retardancy. Angew. Chem. Int. Edit. 2018, 57, 10450–10467. [Google Scholar] [CrossRef] [Green Version]
- Matzen, M.; Marti, J.; Oñate, E.; Idelsohn, S.; Schartel, B. Advanced experiments and particle finite element modelling on dripping V-0 polypropylene. In Proceedings of the Fire and Materials 2017, 15th International Conference, Interscience Communications, San Francisco, CA, USA, 6–8 February 2017; pp. 57–62. [Google Scholar]
- Zammarano, M.; Krämer, R.H.; Harris, R., Jr.; Ohlemiller, T.J.; Shields, J.R.; Rahatekar, S.S.; Lacerda, S.; Gilman, J.W. Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym. Advan. Technol. 2008, 19, 588–595. [Google Scholar] [CrossRef]
- Kempel, F.; Schartel, B.; Marti, J.M.; Butler, K.M.; Rossi, R.; Idelsohn, S.R.; Oñate, E.; Hofmann, A. Modelling the vertical UL 94 test: Competition and collaboration between melt dripping, gasification and combustion. Fire Mater. 2015, 39, 570–584. [Google Scholar] [CrossRef]
- Matzen, M.; Kandola, B.; Huth, C.; Schartel, B. Influence of flame retardants on the melt dripping behavior of thermoplastic polymers. Materials 2015, 8, 5621–5646. [Google Scholar] [CrossRef] [Green Version]
- Acuña, P.; Li, Z.; Santiago-Calvo, M.; Villafañe, F.; Rodriguez-Perez, M.Á.; Wang, D.Y. Influence of the characteristics of expandable graphite on the morphology, thermal properties, fire behavior and compression performance of a rigid polyurethane foam. Polymers 2019, 11, 168. [Google Scholar] [CrossRef] [Green Version]
- Camino, G.; Duquesne, S.; Delobel, R.; Eling, B.; Lindsay, C.; Roles, T. Mechanism of expandable graphite fire retardant action in polyurethanes. Abstr. Pap. Am. Chem. S 2000, 220, U333–U334. [Google Scholar] [CrossRef]
- Chen, Y.J.; Luo, Y.F.; Guo, X.H.; Chen, L.J.; Xu, T.W.; Jia, D.M. Structure and flame-retardant actions of rigid polyurethane foams with expandable graphite. Polymers 2019, 11, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Haro, J.C.; López-Pedrajas, D.; Pérez, Á.; Rodríguez, J.F.; Carmona, M. Synthesis of rigid polyurethane foams from phosphorylated biopolyols. Environ. Sci. Pollut. R 2019, 26, 3174–3183. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Xu, B.; Wang, X.D.; Liu, Y.T. A phosphorous-based bi-functional flame retardant for rigid polyurethane foam. Polym. Degrad. Stabil. 2021, 186, 109516. [Google Scholar] [CrossRef]
- Bashirzadeh, R.; Gharehbaghi, A. An investigation on reactivity, mechanical and fire properties of pu flexible foam. J. Cell Plast. 2010, 46, 129–158. [Google Scholar] [CrossRef]
- Modest, M.; Lorenzetti, A. Halogen-free flame retardants for polymeric foams. Polym. Degrad. Stabil. 2002, 78, 167–173. [Google Scholar] [CrossRef]
- Wang, X.C.; Sun, Y.P.; Sheng, J.; Geng, T.; Turng, L.S.; Guo, Y.G.; Liu, X.H.; Liu, C.T. Effects of expandable graphite on the flame-retardant and mechanical performances of rigid polyurethane foams. J. Phys. Condens. Matter 2022, 34, 084002. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Z.D.; Lei, Y. Flame retardant and smoke-suppressant rigid polyurethane foam based on sodium alginate and aluminum diethylphosphite. Des. Monomers Polym. 2021, 24, 46–52. [Google Scholar] [CrossRef]
- Costache, M.C.; Heidecker, M.J.; Manias, E.; Camino, G.; Frache, A.; Beyer, G.; Gupta, R.K.; Wilkie, C.A. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene–vinyl acetate copolymer and polystyrene. Polymer 2007, 48, 6532–6545. [Google Scholar] [CrossRef]
- Jang, B.N.; Wilkie, C.A. The thermal degradation of polystyrene nanocomposite. Polymer 2005, 46, 2933–2942. [Google Scholar] [CrossRef]
- Jang, B.N.; Costache, M.; Wilkie, C.A. The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 2005, 46, 10678–10687. [Google Scholar] [CrossRef]
- Rao, W.H.; Liao, W.; Wang, H.; Zhao, H.B.; Wang, Y.Z. Flame-retardant and smoke-suppressant flexible polyurethane foams based on reactive phosphorus-containing polyol and expandable graphite. J. Hazard. Mater. 2018, 360, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Thong, Y.X.; Li, X.D.; Yin, X.J. Determining the best flame retardant for rigid polyurethane foam–Tris(2-chloroisopropyl) phosphate, expandable graphite, or silica aerogel. J. Appl. Polym. Sci. 2022, 139, 51888. [Google Scholar] [CrossRef]
- Wang, C.Q.; Ge, F.Y.; Sun, J.; Cai, Z.S. Effects of expandable graphite and dimethyl methylphosphonate on mechanical, thermal, and flame-retardant properties of flexible polyurethane foams. J. Appl. Polym. Sci. 2013, 130, 916–926. [Google Scholar] [CrossRef]
- Wang, G.S.; Xu, W.Z.; Chen, R.; Li, W.; Liu, Y.C.; Yang, K. Synergistic effect between zeolitic imidazolate framework-8 and expandable graphite to improve the flame retardancy and smoke suppression of polyurethane elastomer. J. Appl. Polym. Sci. 2020, 137, 48048. [Google Scholar] [CrossRef]
- Pang, X.Y.; Xin, Y.P.; Shi, X.Z.; Xu, J.Z. Effect of different size-modified expandable graphite and ammonium polyphosphate on the flame retardancy, thermal stability, physical, and mechanical properties of rigid polyurethane foam. Polym. Eng. Sci. 2019, 59, 1381–1394. [Google Scholar] [CrossRef]
- Li, J.; Mo, X.H.; Li, Y.; Zou, H.W.; Liang, M.; Chen, Y. Influence of expandable graphite particle size on the synergy flame retardant property between expandable graphite and ammonium polyphosphate in semi-rigid polyurethane foam. Polym. Bull. 2018, 75, 5287–5304. [Google Scholar] [CrossRef]
- Lorenzetti, A.; Modesti, M.; Gallo, E.; Schartel, B.; Besco, S.; Roso, M. Synthesis of phosphinated polyurethane foams with improved fire behavior. Polym. Degrad. Stabil. 2012, 97, 2364–2369. [Google Scholar] [CrossRef]
- Lorenzetti, A.; Besco, S.; Hrelja, D.; Roso, M.; Gallo, E.; Schartel, B.; Modesti, M. Phosphinates and layered silicates in charring polymers: The flame retardancy action in polyurethane foams. Polym. Degrad. Stabil. 2013, 98, 2366–2374. [Google Scholar] [CrossRef]
- Zhou, F.; Ma, C.; Zhang, K.; Chan, Y.Y.; Xiao, Y.L.; Schartel, B.; Döring, M.; Wang, B.B.; Hu, W.Z.; Hu, Y. Synthesis of ethyl (diethoxymethyl)phosphinate derivatives and their flame retardancy in flexible polyurethane foam: Structural-flame retardancy relationships. Polym. Degrad. Stabil. 2021, 188, 109557. [Google Scholar] [CrossRef]
- Chen, Y.J.; Li, L.S.; Wu, X.D. Construction of an efficient ternary flame retardant system for rigid polyurethane foam based on bi-phase flame retardant effect. Polym. Advan. Technol. 2020, 31, 3202–3210. [Google Scholar] [CrossRef]
- Qian, L.J.; Li, L.J.; Chen, Y.J.; Xu, B.; Qiu, Y. Quickly self-extinguishing flame retardant behavior of rigid polyurethane foams linked with phosphaphenanthrene groups. Compos. Part B-Eng. 2019, 175, 107186. [Google Scholar] [CrossRef]
- Bourbigot, S.; Le Bras, M.; Delobel, R.; Bréant, P.; Trémillon, J.M. Carbonization mechanisms resulting from intumescence–Part II. Association with an ethylene terpolymer and the ammonium polyphosphate-pentaerythritol fire retardant system. Carbon 1995, 33, 283–294. [Google Scholar] [CrossRef]
- Bourbigot, S.; Le Bras, M. Flame retardant plastics. In Plastic Flammability Handbook, 3rd ed.; Troitzsch, J., Ed.; Carl Hanser Verlag: Munich, Germany, 2004; pp. 133–135. [Google Scholar]
- Schartel, B. Phosphorus-based flame retardancy mechanisms–Old hat or a starting point for future development? Materials 2010, 3, 4710–4745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levchik, S.V.; Wilkie, C.A. Char formation and characterization. In Fire Retardancy of Polymeric Materials, 2nd ed.; Wilkie, C.A., Morgan, A.B., Eds.; CRC Press: Boca Raton, FL, USA, 2010; pp. 239–260. [Google Scholar]
- Lorenzetti, A.; Modesti, M.; Besco, S.; Hrelja, D.; Donadi, S. Influence of phosphorus valency on thermal behavior of flame retarded polyurethane foams. Polym. Degrad. Stabil. 2011, 96, 1455–1461. [Google Scholar] [CrossRef]
- Lenz, J.; Pospiech, D.; Paven, M.; Albach, R.W.; Günther, M.; Schartel, B.; Voit, B. Improving the flame retardance of polyisocyanurate foams by Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide-containing additives. Polymers 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.J.; Xu, Y.J.; Rao, W.H.; Huang, J.Q.; Wang, X.L.; Chen, L.; Wang, Y.Z. Influence of valence and structure of phosphorus-containing melamine salts on the decomposition and fire behaviors of flexible polyurethane foams. Ind. Eng. Chem. Rev. 2014, 53, 8773–8783. [Google Scholar] [CrossRef]
- Brehme, S.; Köppl, T.; Schartel, B.; Altstädt, V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. E-Polymers 2014, 14, 193–208. [Google Scholar] [CrossRef]
- Rabe, S.; Chuenban, Y.; Schartel, B. Exploring the modes of action of phosphorus-based flame retardants in polymeric systems. Materials 2017, 10, 455. [Google Scholar] [CrossRef] [Green Version]
- Langfeld, K.; Wilke, A.; Sut, A.; Greiser, S.; Ulmer, B.; Andrievici, V.; Limbach, P.; Bastian, M.; Schartel, B. Halogen-free fire retardant styrene-ethylene-butylene-styrene-based thermoplastic elastomers using synergistic aluminum diethylphosphinate-based combinations. J. Fire Sci. 2015, 33, 157–177. [Google Scholar] [CrossRef]
- Braun, U.; Schartel, B. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol. Chem. Phys. 2004, 205, 2185–2196. [Google Scholar] [CrossRef]
- Cao, Z.J.; Liao, W.; Wang, S.X.; Zhao, H.B.; Wang, Y.Z. Polyurethane foams with functionalized graphene towards high fire-resistance, low smoke release, superior thermal insulation. Chem. Eng. J. 2019, 361, 1245–1254. [Google Scholar] [CrossRef]
- Camino, B.; Camino, G. The chemical kinetics of the polymer combustion allows for inherent fire retardant synergism. Polym. Degrad. Stabil. 2019, 160, 142–147. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Ma, C.; Zhou, F.; Schartel, B. Flame retardant flexible polyurethane foams based on phosphorous soybean-oil polyol and expandable graphite. Polym. Degrad. Stabil. 2021, 191, 109656. [Google Scholar] [CrossRef]
- Wilke, A.; Langfeld, K.; Ulmer, B.; Andrievici, V.; Hörold, A.; Limbach, P.; Bastian, M.; Schartel, B. Halogen-free multicomponent flame retardant thermoplastic styrene-ethylene-butylene-styrene elastomers based on ammonium polyphosphate-expandable graphite synergy. Ind. Eng. Chem. Res. 2017, 56, 8251–8263. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.J.; Huang, Z.G.; Cao, Y.F.; Li, L.J. Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym. Degrad. Stabil. 2016, 130, 97–102. [Google Scholar] [CrossRef]
- Hu, Y.X.; Zhou, Z.J.; Li, S.S.; Yang, D.; Zhang, S.; Hou, Y.K. Flame retarded rigid polyurethane foams composites modified by aluminum diethylphosphinate and expanded graphite. Front. Mater. 2021, 7, 629284. [Google Scholar] [CrossRef]
- Schartel, B.; Weiß, A.; Mohr, F.; Kleermeier, M.; Hartwig, A.; Braun, U. Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate. J. Appl. Polym. Sci. 2010, 118, 1134–1143. [Google Scholar] [CrossRef]
- Fichera, M.A.; Braun, U.; Schartel, B.; Sturm, H.; Knoll, U.; Jäger, C. Solid-state NMR investigations of the pyrolysis and thermo-oxidative decomposition products of a polystyrene/red phosphorus/magnesium hydroxide system. J. Anal. Appl. Pyrol. 2007, 78, 378–386. [Google Scholar] [CrossRef]
- Qian, L.J.; Feng, F.F.; Tang, S. Bi-phase flame retardant effect of hexa-phenoxy-cyclotriphosphazene on rigid polyurethane foams containing expandable graphite. Polymer 2014, 55, 95–101. [Google Scholar] [CrossRef]
- Wu, N.J.; Niu, F.K.; Lang, W.C.; Yu, J.H.; Fu, G.L. Synthesis of reactive phenylphosphoryl glycol ether oligomer and improved flame retardancy and mechanical property of modified rigid polyurethane foams. Mater. Design. 2019, 181, 107929. [Google Scholar] [CrossRef]
- Shi, X.X.; Jiang, S.H.; Zhu, J.Y.; Li, G.H.; Peng, X.F. Establishment of a highly efficient flame-retardant system for rigid polyurethane foams based on bi-phase flame-retardant actions. RSC Adv. 2018, 8, 9985–9995. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Liu, X.L.; Zhou, L.; Zhang, P.; Deng, D.; Jiang, H.H. Steel slag waste combined with melamine pyrophosphate as a flame retardant for rigid polyurethane foams. Adv. Powder Technol. 2020, 31, 279–286. [Google Scholar] [CrossRef]
- Tang, G.; Liu, X.L.; Yang, Y.D.; Chen, D.P.; Zhang, H.; Zhou, L.; Zhang, P.; Jiang, H.H.; Deng, D. Phosphorus-containing silane modified steel slag waste to reduce fire hazards of rigid polyurethane foams. Adv. Powder Technol. 2020, 31, 1420–1430. [Google Scholar] [CrossRef]
- Yang, Y.D.; Zhang, G.Y.; Yu, F.; Liu, M.R.; Yang, S.J.; Tang, G.; Xu, X.R.; Wang, B.B.; Liu, X.Y. Flame retardant rigid polyurethane foam composites based on iron tailings and aluminum phosphate: A novel strategy for utilizing industrial solid wastes. Polym. Advan. Technol. 2021, 32, 4826–4839. [Google Scholar] [CrossRef]
- Alongi, J.; Carletto, R.A.; Di Blasio, A.; Carosio, F.; Bosco, F.; Malucelli, G. DNA: A novel, green, natural flame retardant and suppressant for cotton. J. Mater. Chem. A 2013, 1, 4779–4785. [Google Scholar] [CrossRef]
- Alongi, J.; Di Blasio, A.; Milnes, J.; Malucelli, G.; Bourbigot, S.; Kandola, B.; Camino, G. Thermal degradation of DNA, an all-in-one natural intumescent flame retardant. Polym. Degrad. Stabil. 2015, 113, 110–118. [Google Scholar] [CrossRef]
- Li, Y.C.; Yang, Y.H.; Kim, Y.S.; Shields, J.; Davis, R.D. DNA-based nanocomposite biocoatings for fire-retarding polyurethane foam. Green Mater. 2014, 2, 144–152. [Google Scholar] [CrossRef]
- Sykam, K.; Försth, M.; Sas, G.; Restás, Á.; Das, O. Phytic acid: A bio-based flame retardant for cotton and wool fabrics. Ind. Crop. Prod. 2021, 164, 113349. [Google Scholar] [CrossRef]
- Lin, B.; Yuen, A.C.Y.; Chen, T.B.Y.; Yu, B.; Yang, W.; Zhang, J.; Yao, Y.; Wu, S.Y.; Wang, C.H.; Yeoh, G.H. Experimental and numerical perspective on the fire performance of MXene/Chitosan/Phytic acid coated flexible polyurethane foam. Sci. Rep. 2021, 11, 4684. [Google Scholar] [CrossRef]
- Wong, E.H.H.; Fan, K.W.; Lei, L.; Wang, C.; Baena, J.C.; Okoye, H.; Fam, W.; Zhou, D.; Oliver, S.; Khalid, A.; et al. Fire-resistant flexible polyurethane foams via nature-inspired chitosan-expandable graphite coatings. ACS Appl. Polym. Mater. 2021, 3, 4079–4087. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire. Carbohyd. Polym. 2020, 246, 116641. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Yuen, A.C.Y.; Li, A.; Zhang, Y.; Chen, T.B.Y.; Yu, B.; Lee, E.W.M.; Peng, S.H.; Yang, W.; Lu, H.D.; et al. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions. J. Hazard. Mater. 2020, 381, 120952. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.M.; Cho, W.; Dubrulle, L.; Grützmacher, P.G.; Zammarano, M. Intumescent polydopamine coatings for fire protection. Green Mater. 2020, 8, 162–171. [Google Scholar] [CrossRef]
- Cho, J.H.; Vasagar, V.; Shanmuganathan, K.; Jones, A.R.; Nazarenko, S.; Ellison, C.J. Bioinspired catecholic flame retardant nanocoating for flexible polyurethane foams. Chem. Mater. 2015, 27, 6784–6790. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Wang, D.Y. Polydopamine-assisted strategies for preparation of fire-safe polymeric materials: A review. Eur. Polym. J. 2020, 138, 109973. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Zeng, J.; Liu, W.F.; Qiu, X.Q.; Qian, Y.; Zhang, H.; Yang, Y.; Liu, M.; Yang, D.J. Pristine lignin as a flame retardant in flexible polyurethane foam. Green Chem. 2021, 23, 5972–5980. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Wang, J.H.; Zhou, H.Z.; Zhang, Y.; Yang, Y.Y.; Liu, X.H.; Ye, J.W.; Chen, D.Y.; Wang, S.R. Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities. Fuel Process. Technol. 2018, 181, 142–156. [Google Scholar] [CrossRef]
- Alinejad, M.; Henry, C.; Nikafshar, S.; Gondaliya, A.; Bagheri, S.; Chen, N.; Singh, S.K.; Hodge, D.B.; Nejad, M. Lignin-based polyurethanes: Opportunities for bio-based foams, elastomers, coatings and adhesives. Polymers 2019, 11, 1202. [Google Scholar] [CrossRef] [Green Version]
- Gondaliya, A.; Nejad, M. Lignin as a partial polyol replacement in polyurethane flexible foam. Molecules 2021, 26, 2302. [Google Scholar] [CrossRef]
- Calvo-flores, F.G.; Dobado, J.A. Lignin as renewable raw material. Chemsuschem 2010, 3, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.Y.; Yuan, H.X.; Zhang, P.; Yang, H.Y.; Song, L.; Hu, Y. Functionalized lignin for halogen-free flame retardant rigid polyurethane foam: Preparation, thermal stability, fire performance and mechanical properties. J. Polym. Res. 2013, 20, 234. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Zhao, Q.; Li, L.; Yan, R.; Zhang, J.; Duan, J.C.; Liu, B.J.; Sun, Z.Y.; Zhang, M.Y.; Hu, W.; et al. Synthesis of a lignin-based phosphorus-containing flame retardant and its application in polyurethane. RSC Adv. 2018, 8, 32252–32261. [Google Scholar] [CrossRef] [Green Version]
- Sonnenschein, M.F.; Wendt, B.L. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships. Polymer 2013, 54, 2511–2520. [Google Scholar] [CrossRef]
- Zhang, L.; Jeon, H.K.; Malsam, J.; Herrington, R.; Macosko, C.W. Substituting soybean oil-based polyol into polyurethane flexible foams. Polymer 2007, 48, 6656–6667. [Google Scholar] [CrossRef]
- Pawlik, H.; Prociak, A. Influence of palm oil-based polyol on the properties of flexible polyurethane foams. J. Polym. Environ. 2012, 20, 438–445. [Google Scholar] [CrossRef]
- Calvo-Correas, T.; Mosiewicki, M.A.; Corcuera, M.A.; Ecaiza, A.; Aranguren, M.I. Linseed oil-based polyurethane rigid foams: Synthesis and characterization. J. Renew. Mater. 2015, 3, 3–13. [Google Scholar] [CrossRef]
- Chauke, N.P.; Mukaya, H.E.; Nkazi, D.B. Chemical modifications of castor oil: A review. Sci. Progress 2019, 102, 199–217. [Google Scholar] [CrossRef]
- Wai, P.T.; Jiang, P.P.; Shen, Y.R.; Zhang, P.B.; Gu, Q.; Leng, Y. Catalytic developments in the epoxidation of vegetable oils and the analysis methods of epoxidized products. RSC Adv. 2019, 9, 38119–38136. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.Q.; Zhang, C.Q.; Kessler, M.R. Polyols and polyurethanes prepared from epoxidized soybean oil ring-opened by polyhydroxy fatty acids with varying OH numbers. J. Appl. Polym. Sci. 2015, 132, 41213. [Google Scholar] [CrossRef]
- Cifarelli, A.; Boggioni, L.; Vignali, A.; Tritto, I.; Bertini, F.; Losio, S. Flexible polyurethane foams from epoxidized vegetable oils and a bio-based diisocyanate. Polymers 2021, 13, 612. [Google Scholar] [CrossRef] [PubMed]
- Petrović, Z.S. Polyurethanes from vegetable oils. Polym. Rev. 2008, 48, 109–155. [Google Scholar] [CrossRef]
- Tang, G.; Liu, M.R.; Deng, D.; Zhao, R.Q.; Liu, X.L.; Yang, Y.D.; Yang, S.J.; Liu, X.J. Phosphorus-containing soybean oil-derived polyols for flame-retardant and smoke-suppressant rigid polyurethane foams. Polym. Degrad. Stabil. 2021, 191, 109701. [Google Scholar] [CrossRef]
- Bhoyate, S.; Ionescu, M.; Kahol, P.K.; Gupta, R.K. Castor-oil derived nonhalogenated reactive flame-retardant-based polyurethane foams with significant reduced heat release rate. J. Appl. Polym. Sci. 2019, 136, 47276. [Google Scholar] [CrossRef]
- Acuña, P.; Zhang, J.; Yin, G.Z.; Liu, X.Q.; Wang, D.Y. Bio-based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon-based materials. J. Mater. Sci. 2021, 56, 2684–2701. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Zhang, M.; Zhou, Y.H.; Hu, L.H. The study of mechanical behavior and flame retardancy of castor oil phosphate-based rigid polyurethane foam composites containing expanded graphite and triethyl phosphate. Polym. Degrad. Stabil. 2013, 98, 2784–2794. [Google Scholar] [CrossRef]
- Chen, M.J.; Wang, X.; Tao, M.C.; Liu, X.Y.; Liu, Z.G.; Zhang, Y.; Zhao, C.S.; Wang, J.S. Full substitution of petroleum-based polyols by phosphorus-containing soy-based polyols for fabricating highly flame-retardant polyisocyanurate foams. Polym. Degrad. Stabil. 2018, 154, 312–322. [Google Scholar] [CrossRef]
- Langanke, J.; Wolf, A.; Hofmann, J.; Böhm, K.; Subhani, M.A.; Müller, T.E.; Leitner, W.; Gürtler, C. Carbon dioxide (CO2) as sustainable feedstock for polyurethane production. Green Chem. 2014, 16, 1865–1870. [Google Scholar] [CrossRef]
- Lubczak, R.; Broda, D.; Kus-Liśkiewicz, M.; Szczęch, D.; Bobko, E.; Dębska, B.; Szpiłyka, M.; Lubczak, J. Flame retardant polyurethane foams with starch unit. Polym. Test. 2021, 104, 107395. [Google Scholar] [CrossRef]
- Konieczny, J.; Loos, K. Green polyurethanes from renewable isocyanates and biobased white dextrins. Polymers 2019, 11, 256. [Google Scholar] [CrossRef] [Green Version]
- Hojabri, L.; Kong, X.H.; Narine, S.S. Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: Synthesis, polymerization, and characterization. Biomacromolecules 2009, 10, 884–891. [Google Scholar] [CrossRef]
- Guan, J.; Song, Y.H.; Lin, Y.; Yin, X.Z.; Zuo, M.; Zhao, Y.H.; Tao, X.L.; Zheng, Q. Progress in study of non-isocyanate polyurethane. Ind. Eng. Chem. Res. 2011, 50, 6517–6527. [Google Scholar] [CrossRef]
- Stachak, P.; Łukaszewska, I.; Hebda, E.; Pielichowski, K. Recent advances in fabrication of non-isocyanate polyurethane-based composite materials. Materials 2021, 14, 3497. [Google Scholar] [CrossRef] [PubMed]
- Błażek, K.; Datta, J. Renewable natural resources as green alternative substrates to obtain bio-based non-isocyanate polyurethanes-review. Crit. Rev. Env. Sci. Tec. 2019, 49, 173–211. [Google Scholar] [CrossRef]
- Kathalewar, M.S.; Joshi, P.B.; Sabnis, S.; Malshe, V.C. Non-isocyanate polyurethane: From chemistry to applications. RSC Adv. 2013, 3, 4110–4129. [Google Scholar] [CrossRef]
- Deng, Y.M.; Dewil, R.; Appels, L.; Ansart, R.; Baeyens, J.; Kang, Q. Reviewing the thermo-chemical recycling of waste polyurethane foam. J. Environ. Manag. 2021, 278, 111527. [Google Scholar] [CrossRef]
- Liu, J.W.; He, J.; Xue, R.; Xu, B.; Qian, X.J.; Xin, F.X.; Blank, L.M.; Zhou, J.; Wei, R.; Dong, W.L.; et al. Biodegradation and up-cycling of polyurethanes: Progress, challenges, and prospects. Biotechnol. Adv. 2021, 48, 107730. [Google Scholar] [CrossRef]
- Morgan, A.B. Revisiting flexible polyurethane foam flammability in furniture and bedding in the United States. Fire Mater. 2021, 45, 68–80. [Google Scholar] [CrossRef]
- Araki, A.; Saito, I.; Kanazawa, A.; Morimoto, K.; Nakayama, K.; Shibata, E.; Tanaka, M.; Takigawa, T.; Yoshimura, T.; Chikara, H.; et al. Phosphorus flame retardants in indoor dust and their relation to asthma and allergies of inhabitants. Indoor. Air. 2014, 24, 3–15. [Google Scholar] [CrossRef]
- Bruchajzer, E.; Frydrych, B.; Szymańska, J.A. Organophosphorus flame retardants–Toxicity and influence on human health. Med. Pr. 2015, 66, 235–264. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.C.; Eulaers, I.; Alves, A.; Papadopoulou, E.; Padilla-Sanchez, J.A.; Lai, F.Y.; Haug, L.S.; Voorspoels, S.; Neels, H.; Covaci, A. Human exposure pathways to organophosphate flame retardants: Associations between human biomonitoring and external exposure. Environ. Int. 2019, 127, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Chupeau, Z.; Bonvallot, N.; Mercier, F.; Le Bot, B.; Chevrier, C.; Glorennec, P. Organophosphorus flame retardants: A global review of indoor contamination and human exposure in Europe and epidemiological evidence. Int. J. Environ. Res. Pub. Health 2020, 17, 6713. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.Y.; Zhao, B.; Wang, J.S.; Liu, P.W.; Liu, Y.Q. Flame retardation and thermal stability of novel phosphoramide/expandable graphite in rigid polyurethane foam. J. Appl. Polym. Sci. 2018, 135, 46434. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, P.; Shi, Y.Q.; Rao, X.H.; Cai, S.C.; Fu, L.B.; Feng, Y.Z.; Wang, L.C.; Zheng, X.Q.; Yang, W. Enhanced fire safety of rigid polyurethane foam via synergistic effect of phosphorus/nitrogen compounds and expandable graphite. Molecules 2020, 25, 4741. [Google Scholar] [CrossRef]
- Xi, W.; Qian, L.J.; Chen, Y.J.; Wang, J.Y.; Liu, X.X. Addition flame-retardant behaviors of expandable graphite and [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester in rigid polyurethane foams. Polym. Degrad. Stabil. 2015, 122, 36–43. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chan, Y.Y.; Schartel, B. It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams. Polymers 2022, 14, 2562. https://doi.org/10.3390/polym14132562
Chan YY, Schartel B. It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams. Polymers. 2022; 14(13):2562. https://doi.org/10.3390/polym14132562
Chicago/Turabian StyleChan, Yin Yam, and Bernhard Schartel. 2022. "It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams" Polymers 14, no. 13: 2562. https://doi.org/10.3390/polym14132562
APA StyleChan, Y. Y., & Schartel, B. (2022). It Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams. Polymers, 14(13), 2562. https://doi.org/10.3390/polym14132562