Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers—Processing, Properties, and Applications in Sports Equipment: A Review
Abstract
:1. Introduction
1.1. General Schemes and Conditions for Producing CFs
1.2. Precursor Selection
1.2.1. Polyacrylonitrile
1.2.2. Pitch
1.2.3. Rayon
1.2.4. Synthetic Polymers
1.2.5. Biomass
1.3. Applications of CFs in Sports Equipment
1.3.1. Significance of CFs in Competitive Sports
1.3.2. Advantages of CFs Applied in Sports Equipment
2. Lignocellulosic Biomass
2.1. Lignin
2.1.1. Properties of Lignin
2.1.2. Separation and Extraction
2.1.3. Lignin-Based CFs
2.2. Cellulose
2.2.1. Properties of Cellulose
2.2.2. Separation and Extraction
2.2.3. Cellulose-Based CFs
2.3. Performance Optimization of Lignocellulosic Biomass-Based CFs
2.3.1. Blending with AN/PAN/CNTs
2.3.2. Blending with Other Synthetic Polymers
2.3.3. Lignin–Lignin Blends
2.3.4. Lignin–Cellulose Blends
2.3.5. Blending with Other Biomasses
3. Relationship between Spinning and Properties of Lignocellulosic Biomass-Based CFs
3.1. Wet-Spinning
3.2. Dry-Spinning
3.3. Melt-Spinning
3.4. Electrospinning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Q.; Jing, M.; Wang, C.; Chen, M.; Zhao, S.; Wang, W.; Qin, J. Correlation between fibril structures and mechanical properties of polyacrylonitrile fibers during the dry-jet wet spinning process. J. Appl. Polym. Sci. 2019, 136, 47336. [Google Scholar] [CrossRef]
- Zhou, G.; Byun, J.H.; Lee, S.B.; Yi, J.W.; Lee, W.; Lee, S.K.; Kim, B.S.; Park, J.K.; Lee, S.G.; He, L. Nano structural analysis on stiffening phenomena of PAN-based carbon fibers during tensile deformation. Carbon 2014, 76, 232–239. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kogo, Y.; Koyanagi, J.; Tanaka, F.; Okabe, T. Torsional modulus and internal friction of polyacrylonitrile-and pitch-based carbon fibers. J. Mater. Sci. 2015, 50, 7018–7025. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Seidlitz, H.; Krenz, J.; Goracy, K.; Urbaniak, M.; Rösch, J.J. Recycling of carbon fiber reinforced composite polymers—Review—Part 2: Recovery and application of recycled carbon fibers. Polymers 2020, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Puziy, A.M.; Poddubnaya, O.I.; Sevastyanova, O. Carbon Materials from Technical Lignins: Recent Advances; Springer: Berlin, Germany, 2020; pp. 95–128. [Google Scholar]
- Li, Q.; Xie, S.; Serem, W.K.; Naik, M.T.; Liu, L.; Yuan, J.S. Quality carbon fibers from fractionated lignin. Green Chem. 2017, 19, 1628–1634. [Google Scholar] [CrossRef]
- Le, N.D.; Trogen, M.; Ma, Y.; Varley, R.J.; Hummel, M.; Byrne, N. Cellulose-lignin composite fibers as precursors for carbon fibers: Part 2-the impact of precursor properties on carbon fibers. Carbohyd. Polym. 2020, 250, 116918. [Google Scholar] [CrossRef]
- Zhang, B.; Kang, F.; Tarascon, J.M.; Kim, J.K. Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog. Mater. Sci. 2015, 76, 319–380. [Google Scholar] [CrossRef]
- Kaur, J.; Millington, K.; Smith, S. Producing high-quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review. J. Appl. Polym. Sci. 2016, 133, 38. [Google Scholar] [CrossRef] [Green Version]
- Rangarajan, P.; Yang, J.; Bhanu, V.; Godshall, D.; McGrath, J.; Wilkes, G.; Baird, D. Effect of comonomers on melt processability of polyacrylonitrile. J. Appl. Polym Sci. 2002, 85, 69–83. [Google Scholar] [CrossRef]
- Masson, J. Acrylic Fiber Technology and Applications; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Frank, E.; Hermanutz, F.; Buchmeiser, M.R. Carbon fibers: Precursors, manufacturing, and properties. Macromol. Mater. Eng. 2012, 297, 493–501. [Google Scholar] [CrossRef]
- Fedorov, V.B.; Shorshorov, M.K.; Khakimova, D.K. Carbon and Its Interaction with Metals; Metallurgija: Moscow, Russia, 1978. [Google Scholar]
- Duffy, J.V. Pyrolysis of treated rayon fiber. J. Appl. Polym. Sci. 1971, 15, 715–729. [Google Scholar] [CrossRef]
- Mondal, S.; Memmott, P.; Martin, D. Preparation and characterization of spinifex resin-based bio-polyurethane/thermoplastic polyurethane blends. Polym–Plast. Technol. 2013, 52, 1535–1541. [Google Scholar] [CrossRef]
- Riggs, D.M.; Shuford, R.J.; Lewis, R.W. Handbook of Composites; Lubin, G., Ed.; Springer: New York, NY, USA, 1982; pp. 196–271. [Google Scholar]
- Ogale, A.A.; Zhang, M.; Jin, J. Recent advances in carbon fibers derived from biobased precursors. J. Appl. Polym. Sci. 2016, 133, 45. [Google Scholar] [CrossRef] [Green Version]
- Mainka, H.; Täger, O.; Körner, E.; Hilfert, L.; Busse, S.; Edelmann, F.T.; Herrmann, A.S. Lignin-an alternative precursor for sustainable and cost-effective automotive carbon fiber. J. Mater. Res. Technol. 2015, 4, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Huang, X. Fabrication and properties of carbon fibers. Materials 2009, 2, 2369–2403. [Google Scholar] [CrossRef]
- Lee, S.; Ko, K.; Youk, J.; Lim, D.; Jeong, W. Preparation and properties of carbon fiber/carbon nanotube wet-laid composites. Polymers 2019, 11, 1597. [Google Scholar] [CrossRef] [Green Version]
- Du, B.; Chen, C.; Sun, Y.; Yu, M.; Liu, B.; Wang, X.; Zhou, J. Lignin bio-oil-based electrospun nanofibers with high substitution ratio property for potential carbon nanofibers applications. Polym. Test. 2020, 89, 106591. [Google Scholar] [CrossRef]
- Omoriyekomwan, J.E.; Tahmasebi, A.; Dou, J.; Wang, R.; Yu, J. A review on the recent advances in the production of carbon nanotubes and carbon nanofibers via microwave-assisted pyrolysis of biomass. Fuel Process. Technol. 2021, 214, 106686. [Google Scholar] [CrossRef]
- Du, B.; Chen, C.; Sun, Y.; Yang, M.; Yu, M.; Liu, B.; Wang, X.; Zhou, J. Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. Int. J. Biol. Macromol. 2020, 156, 669–680. [Google Scholar] [CrossRef]
- Dineshkumar, M.; Begum, K.M.S.; Shrikar, B.; Ramanathan, A. Synthesis and characterization study of solid carbon biocatalyst produced from novel biomass char in a microwave pyrolysis. Mater. Today Proc. 2020, 46, 9814–9819. [Google Scholar] [CrossRef]
- Chen, Y.F.; Wang, C.Y.; Chen, J.Y.; Wang, S.S.; Ju, J.G.; Kang, W.M. Preparing biomass carbon fiber derived from waste rabbit hair as a carrier of TiO2 for photocatalytic degradation of methylene blue. Polymers 2019, 11, 1593. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Zhang, S.; Yang, J.L.; Ji, M.W.; Yu, J.L.; Wang, M.L.; Chai, X.Y.; Yang, B.; Zhu, C.Z.; Xu, J. Preparation, stabilization and carbonization of a novel polyacrylonitrile-based carbon fiber precursor. Polymers 2019, 11, 1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulefera, I.; Trabelsi, M.; Mamun, A.; Sabantina, L. Electrospun carbon nano fibers from biomass and biomass blends-current trends. Polmers 2021, 13, 1071. [Google Scholar] [CrossRef] [PubMed]
- Azwar, E.; Mahari, W.A.W.; Chuah, J.H.; Vo, D.V.N.; Ma, N.L.; Lam, W.H.; Lam, S.S. Transformation of biomass into carbon nanofiber for supercapacitor application-a review. Int. J. Hydrog. Energy 2018, 43, 20811–20821. [Google Scholar] [CrossRef]
- Vanneste, J.; Ennaert, T.; Vanhulsel, A.; Sels, B. Unconventional pretreatment of lignocellulose with low-temperature plasma. ChemSusChem 2017, 10, 14–31. [Google Scholar] [CrossRef]
- Carrott, P.J.M.; Carrott, M.R. Lignin–from natural adsorbent to activated carbon: A review. Bioresource Technol. 2007, 98, 2301–2312. [Google Scholar]
- Bugg, T.D.; Ahmad, M.; Hardiman, E.M.; Rahmanpour, R. Pathways for degradation of lignin in bacteria and fungi. Nat. Prod. Rep. 2011, 28, 1883–1896. [Google Scholar] [CrossRef]
- Zakzeski, J.; Bruijnincx, P.C.; Jongerius, A.L.; Weckhuysen, B.M. The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 2010, 110, 3552–3599. [Google Scholar] [CrossRef]
- Vakkilainen, E. PaperMaking Science and Technology; Book 6B; Gullichsen, J., Paulapuro, H., Eds.; Fapet Oy: Helsinki, Finland, 2000; pp. 6–34. [Google Scholar]
- Edie, D.D.; Diefendorf, R.J. Carbon–Carbon Materials and Composites; Buckley, J.D., Edie, D.D., Eds.; Noyes Publications: Park Ridge, IL, USA, 1993; pp. 20–33. [Google Scholar]
- Sjostrom, E. Wood Chemistry: Fundamentals and Applications; Academic Press: New York, NY, USA, 1981; pp. 71–77. [Google Scholar]
- Bhatt, P.; Goe, A. Carbon fibres: Production, properties and potential use. Mater. Sci. Res. India 2017, 14, 52–57. [Google Scholar] [CrossRef]
- Bahl, O.P.; Shen, Z.; Lavin, J.G.; Ross, R. Manufacture of Carbon Fibers. Carbon Fibers, 3rd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 1–83. [Google Scholar]
- Radhakrishnan, G.; Joseph, K.T.; Santappa, M. Influence of process variables on precursor and carbon fibres. Cent. Leather Res. Inst. 1981, 28, 27–31. [Google Scholar]
- Tsai, J.S.; Lin, C.H. The change of crystal orientation from polyacrylonitrile precursor to its resulting carbon fibre. J. Mater. Sci. Lett. 1990, 9, 921–922. [Google Scholar] [CrossRef]
- Bunsell, A.R.; Renard, J. Fundamentals of Fibre Reinforced Composite Materials; IOP Publishing: London, UK, 2005; pp. 3–5. [Google Scholar]
- Peebles, L. Carbon Fibers, Formation, Structure and Properties; CRC Press: Boca Raton, FL, USA, 1995; pp. 7–24. [Google Scholar]
- Kleinert, T.N. Organosolv pulping with aqueous alcohol. Tappi 1974, 57, 99. [Google Scholar]
- Sudo, K.; Shimizu, K. A new carbon fiber from lignin. J. Appl. Polym. Sci. 1992, 44, 127–134. [Google Scholar] [CrossRef]
- Uraki, Y.; Kubo, S.; Nigo, N.; Sano, Y.; Sasaya, T. Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping. Holzforschung 1995, 49, 343. [Google Scholar] [CrossRef]
- Thunga, M.; Chen, K.; Grewell, D.; Kessler, M.R. Bio-renewable precursor fibers from lignin/polylactide blends for conversion to carbon fibers. Carbon 2014, 68, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Ogale, A.A. Effect of temperature and concentration of acetylated-lignin solutions on dry-spinning of carbon fiber precursors. J. Appl. Polym. Sci. 2016, 133, 43663. [Google Scholar] [CrossRef]
- Nordström, Y.; Joffe, R.; Sjöholm, E. Mechanical characterization and application of weibull statistics to the strength of softwood lignin-based carbon fibers. J. Appl. Polym. Sci. 2013, 130, 3689–3697. [Google Scholar] [CrossRef]
- Hosseinaei, O.; Harper, D.P.; Bozell, J.J.; Rials, T.G. Improving processing and performance of pure lignin carbon fibers through hardwood and herbaceous lignin blends. Int. J. Mol. Sci. 2017, 18, 1410. [Google Scholar] [CrossRef] [Green Version]
- Ramasubramanian, G. Influence of Lignin Modification on PAN-Lignin Copolymers as Potential Carbon Fiber Precursors; Iowa State University: Ames, IA, USA, 2013. [Google Scholar]
- Liu, H.C.; Chien, A.T.; Newcomb, B.A.; Davijani, A.A.B.; Kumar, S. Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 2016, 101, 382–389. [Google Scholar] [CrossRef]
- Hu, S.; Hsieh, Y.L. Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin. J. Mater. Chem. A 2013, 1, 11279–11288. [Google Scholar] [CrossRef] [Green Version]
- Kadla, J.F.; Kubo, S.; Venditti, R.A.; Gilbert, R.D.; Compere, A.L.; Griffith, W. Lignin-based carbon fibers for composite fiber applications. Carbon 2002, 40, 2913–2920. [Google Scholar] [CrossRef]
- Kunzmann, C.; Moosburger-Will, J.; Horn, S. High-resolution imaging of the nanostructured surface of polyacrylonitrile-based fibers. J. Mater. Sci. 2016, 51, 1–11. [Google Scholar] [CrossRef]
- Dupont. Available online: http://www.dupont.com/corporate-functions/ourcompany/dupont-history.html (accessed on 6 July 2016).
- Toray Industries. Available online: http://www.toray.com/technology/toray/index.html (accessed on 6 July 2016).
- Bahl, O.P.; Mathur, R.B.; Kundra, K.D. Structure of PAN fibres and its relationship to resulting carbon fibre properties. J. Fiber. Sci. Technol. 1981, 15, 147–151. [Google Scholar] [CrossRef]
- Chung, D. Carbon Fiber Composites; Butterworth-Heinemann: Newton, MA, USA, 1994. [Google Scholar]
- Johnson, D. Structure property relationships in carbon fibers. J. Phys. D Appl. Phys. 2000, 20, 286. [Google Scholar] [CrossRef]
- Hunter, B. Toray Develops High Tensile Strength and Modulus Carbon Fibre. Available online: http://www.innovationintextiles.com/toray-develops–high–tensile–strength–and–modulus–carbon–fiber/ (accessed on 6 July 2016).
- Bennett, S.C.; Johnson, D.J.; Johnson, W. Strength-structure relationships in PAN-based carbon fibres. J. Mater. Sci. 1983, 18, 3337–3347. [Google Scholar] [CrossRef]
- Johnson, J.W.; Thorne, D.J. Effect of internal polymer flaws on strength of carbon fibres prepared from an acrylic precursor. Carbon 1969, 7, 659–661. [Google Scholar] [CrossRef]
- Lai, C.; Zhong, G.; Yue, Z.; Chen, G.; Zhang, L.; Vakili, A.; Fong, H. Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer 2011, 52, 519–528. [Google Scholar] [CrossRef]
- Wilms, C.; Seide, G.; Gries, T. The relationship between process technology, structure development and fibre properties in modern carbon fibre production. Chem. Eng. Trans. 2013, 32, 1609–1614. [Google Scholar]
- Singer, L.S. Carbon fibres from mesophase pitch. Fuel 1981, 60, 839–847. [Google Scholar] [CrossRef]
- Lewis, I.C.; Mchenry, E.R.; Singer, L.S. Producing Carbon Fibers from Mesophase Pitch. AU7624374A, 10 June 1976. [Google Scholar]
- Donnet, J.B.; Bansal, R.C. Carbon Fibers, 2nd ed.; Marcel Dekker: New York, NY, USA, 1990; pp. 1–145. [Google Scholar]
- Park, S.H.; Kim, C.; Choi, Y.O.; Yang, K.S. Preparations of pitch-based CF/ACF webs by electrospinning. Carbon 2003, 13, 2655–2657. [Google Scholar] [CrossRef]
- Kim, B.H.; Bui, N.N.; Yang, K.S.; Ferraris, J.P. Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning. B. Korean. Chem. Soc. 2009, 30, 1967–1972. [Google Scholar]
- Park, S.H.; Kim, C.; Yang, K.S. Preparation of carbonized fiber web from electrospinning of isotropic pitch. Synth. Met. 2004, 143, 175–179. [Google Scholar] [CrossRef]
- Ford, C.E.; Mitchell, C.V. Fibrous Graphite. U.S. Patent US3107152 A, 15 August 1963. [Google Scholar]
- Sisson, W.A. The spinning of rayon as related to its structure and properties. Text. Res. J. 1960, 30, 153–170. [Google Scholar] [CrossRef]
- Krutchen, C. Melt Extrudable Polyacetylene Copolyner Blends. U.S. Patent US3852235 A, 3 December 1974. [Google Scholar]
- Horikiri, S.; Iseki, J.; Minobe, M. Process for Producing Carbon Fibre. U.S. Patent 4070446, 24 January 1978. [Google Scholar]
- Newell, J.A.; Edie, D.D. Factors limiting the tensile strength of PBO-based carbon fibers. Carbon 1996, 34, 551–560. [Google Scholar] [CrossRef]
- Berenguer, R.; García-Mateos, F.J.; Ruiz-Rosas, R.; Cazorla-Amorós, D.; Morallón, E.; Rodríguez-Mirasol, J.; Cordero, T. Biomass-derived binderless fibrous carbon electrodes for ultrafast energy storage. Green. Chem. 2016, 18, 1506–1515. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.A.; Rials, T.G. Recent advances in low-cost carbon fiber manufacture from lignin. J. Appl. Polym. Sci. 2013, 130, 713–728. [Google Scholar] [CrossRef]
- Chatterjee, S.; Saito, T. Lignin-derived advanced carbon materials. ChemSusChem 2015, 8, 3941–3958. [Google Scholar] [CrossRef]
- Frank, E.; Steudle, L.M.; Ingildeev, D.; Spörl, J.M.; Buchmeiser, M.R. Carbon fibers: Precursor systems, processing, structure, and properties. Chem. Int. Edit. 2014, 53, 5262–5298. [Google Scholar] [CrossRef]
- Dumanlı, A.G.; Windle, A.H. Carbon fibres from cellulosic precursors: A review. J. Mater. Sci. 2012, 47, 4236–4250. [Google Scholar] [CrossRef]
- Soltani, A.; Noroozi, R.; Bodaghi, M.; Zolfagharian, A.; Hedayati, R. 3D printing on-water sports boards with bio-inspired core designs. Polymers 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Al Rashid, A.; Khalid, M.Y.; Imran, R.; Ali, U.; Koc, M. Utilization of banana fiber-reinforced hybrid composites in the sports industry. Materials 2020, 13, 3167. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y. Application of new materials in sports equipment. IOP Conf. Ser. Mater. Sci. Eng. 2019, 49, 12112. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.Z. The application of carbon fiber materials in sports equipment. Appl. Mech. Mater. 2013, 443, 613–616. [Google Scholar] [CrossRef]
- Kai, Y. Study of biosafety of nanomaterials in sports engineering. Appl. Mech. Mater. 2019, 340, 348–352. [Google Scholar] [CrossRef]
- Wang, F. Application of new carbon fiber material in sports equipment. IOP Conf. Ser. Earth Environ. Sci. 2021, 714, 032064. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Y. The application prospects of nanotechnology in future competitive sports development. Adv. Mater. Res. 2013, 662, 190–193. [Google Scholar] [CrossRef]
- Du, X.; Li, W. The application of carbon fiber composite materials in sports equipment. Shandong Text. Sci. Technol. 2007, 48, 50–52. [Google Scholar]
- Zhou, B. The development of competitive sports by using advanced materials in sports equipment. J. Jiamusi Educ. Inst. 2009, 35, 47–51. [Google Scholar]
- Dai, Z.; Cao, Q.; Liu, H.; Shi, X.; Wang, X.; Li, H.; Han, Y.; Li, Y.; Zhou, J. Biomimetic biomass-based carbon fibers: Effect of covalent–bond connection on performance of derived carbon fibers. ACS Sustain. Chem. Eng. 2019, 7, 16084–16093. [Google Scholar] [CrossRef]
- Vincent, S.; Prado, R.; Kuzmina, O.; Potter, K.; Bhardwaj, J.; Wanasekara, N.D.; Harniman, R.L.; Koutsomitopoulou, A.; Eichhorn, S.J.; Eichhorn, T.; et al. Regenerated cellulose and willow lignin blends as potential renewable precursors for carbon fibers. ACS Sustain. Chem. Eng. 2018, 6, 5903–5910. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, Y.; Lu, X.; Zhang, X.; He, H.; Pan, F.; Zhou, L.; Liu, X.; Ji, X.; Zhang, S. Cascade utilization of lignocellulosic biomass to high-value products. Green. Chem. 2019, 21, 3499–3535. [Google Scholar] [CrossRef]
- Shikinaka, K.; Otsuka, Y.; Nakamura, M.; Masai, E.; Katayama, Y. Utilization of lignocellulosic biomass via novel sustainable process. J. Oleo Sci. 2018, 67, 1059–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terán-Hilares, R.; Ramos, L.; da Silva, S.S.; Dragone, G.; Mussatto, S.I.; Santos, J.C.D. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Crit. Rev. Biotechnol. 2018, 38, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Solt, P.; Rößiger, B.; Konnerth, J.; Herwijnen, H.V. Lignin phenol formaldehyde resoles using base-catalysed depolymerized kraft lignin. Polymers 2018, 10, 1162. [Google Scholar] [CrossRef] [Green Version]
- Yadav, V.K.; Gupta, N.; Kumar, P.; Dashti, M.G.; Tirth, V.; Khan, S.H.; Jeon, B.H. Recent advances in synthesis and degradation of lignin and lignin nanoparticles and their emerging applications in nanotechnology. Materials 2022, 15, 953. [Google Scholar] [CrossRef]
- Gosslink, R.J.A.; De Jong, E.; Guran, B.; Abacherli, A. Co-ordination network for lignin-standardisation, production and applications adapted to market requirements. Ind. Crops Prod. 2004, 20, 121–129. [Google Scholar] [CrossRef]
- Gargulak, J.D.; Lebo, S.E.; McNally, T.J. Lignin. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New York, NY, USA, 2000; pp. 1–26. [Google Scholar]
- Gosselink, R.J.A. Lignin as a Renewable Aromatic Resource for the Chemical Industry; NLD: Wageningen, The Netherlands, 2011; Volume 12, p. 7. [Google Scholar]
- Paudel, S.R.; Banjara, S.P.; Choi, O.K.; Park, K.Y.; Kim, Y.M.; Lee, J.W. Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresour. Technol. 2017, 245, 1194–1205. [Google Scholar] [CrossRef]
- Lee, H.V.; Hamid, S.B.A.; Zain, S.K. Conversion of lignocellulosic biomass to nanocellulose: Structure and chemical process. Sci. World J. 2014, 631013. [Google Scholar] [CrossRef]
- Chakar, F.S.; Ragauskas, A.J. Review of current and future softwood kraft lignin process chemistry. Ind. Crops Prod. 2004, 20, 131–141. [Google Scholar] [CrossRef]
- Biermann, C.H. Paper Manufacture, Essentials of Pulping and Papermaking; Academic Press: San Diego, CA, USA, 1993; p. 93. [Google Scholar]
- Diebold, V.B.; Cowan, W.F.; Walsh, J.K. Solvent Pulping Process. U.S. Patent US4100016A, 11 July 1978. [Google Scholar]
- Sarkanen, K.V.; Hergert, H.L. Lignins: Occurrence, Formation, Structure and Reactions; Wiley: Toronto, ON, Canada, 1971; p. 188. [Google Scholar]
- Gellerstedt, G.; Sjöholm, E.; Brodin, I. The wood-based biorefinery: A source of carbon fiber? Open Agric. J. 2010, 3, 119. [Google Scholar] [CrossRef]
- Ház, A.; Jablonský, M.; Sládková, A.; Feranc, J.; Šurina, I. Stability of the lignins and their potential in production of bioplastics. Key Eng. Mater. 2016, 688, 25–30. [Google Scholar] [CrossRef]
- Klett, A.S.; Chappell, P.V.; Thies, M.C. Recovering ultraclean lignins of controlled molecular weight from kraft black-liquor lignins. Chem. Commun. 2015, 51, 12855–12858. [Google Scholar] [CrossRef] [PubMed]
- Avelino, F.; Da Silva, K.T.; de Souza, F.; de Sa Moreira, M.; Mazzetto, S.E.; Lomonaco, D. Microwave-assisted organosolv extraction of coconut shell lignin by brnsted and lewis acids catalysts. J. Clean. Prod. 2018, 189, 785–796. [Google Scholar] [CrossRef]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef] [PubMed]
- Williams, C.L.; Li, C.; Hu, H.; Allen, J.C.; Thomas, B.J. Three way comparison of hydrophilic ionic liquid, hydrophobic ionic liquid, and dilute acid for the pretreatment of herbaceous and woody biomass. Front. Energy Res. 2018, 6, 67. [Google Scholar] [CrossRef]
- Tolesa, L.D.; Gupta, B.S.; Lee, M.J. Treatment of coffee husk with ammonium-based ionic liquids: Lignin extraction, degradation, and characterization. ACS Omega 2018, 3, 10866–10876. [Google Scholar] [CrossRef]
- Otani, S.; Fukuoka, Y.; Igarashi, B.; Sasaki, K. Method for Producing Carbonized Lignin Fiber. U.S. Patent US3461082 A, 12 August 1969. [Google Scholar]
- Shi, X.J.; Dai, Z.; Cao, Q.P.; Chen, K.F.; Zhou, J.H. Stepwise fractionation extracted lignin for high strength lignin-based carbon fibers. New J. Chem. 2019, 43, 18868–18875. [Google Scholar] [CrossRef]
- Sudo, K.; Shimizu, K.; Nakashima, N.; Yokoyama, A. A new modification method of exploded lignin for the preparation of a carbon fiber precursor. J. Appl. Polym. Sci. 1993, 48, 1485–1491. [Google Scholar] [CrossRef]
- Bauer, S.; Sorek, H.; Mitchell, V.D.; Ibanez, A.B.; Wemmer, D.E. Characterization of miscanthus giganteus lignin isolated by ethanol organosolv process under reflux condition. J. Agric. Food Chem. 2012, 60, 8203–8212. [Google Scholar] [CrossRef]
- Kubo, S.; Uraki, Y.; Sano, Y. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping. Carbon 1998, 36, 1119–1124. [Google Scholar] [CrossRef]
- Jirouš-Rajković, V.; Miklečić, J. Enhancing weathering resistance of wood—A review. Polymers 2021, 13, 1980. [Google Scholar] [CrossRef] [PubMed]
- Hokkanen, S.; Bhatnagar, A.; Sillanpää, M. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res. 2016, 91, 156–173. [Google Scholar] [CrossRef] [PubMed]
- Al Aiti, M.; Jehnichen, D.; Fischer, D.; Brünig, H.; Heinrich, G. On the morphology and structure formation of carbon fibers from polymer precursor systems. Prog. Mater. Sci. 2018, 98, 477–551. [Google Scholar] [CrossRef]
- Sugiyama, J.; Vuong, R.; Chanzy, H. Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 1991, 24, 4168–4175. [Google Scholar] [CrossRef]
- Hackney, J.M.; Atalla, R.H.; VanderHart, D.L. Modification of crystallinity and crystalline structure of acetobacter xylinum cellulose in the presence of water-soluble β-1, 4-linked polysaccharides: 13C–NMR evidence. Int. J. Biol. Macromol. 1994, 16, 215–218. [Google Scholar] [CrossRef]
- Horii, F.; Yamamoto, H.; Kitamaru, R.; Tanahashi, M.; Higuchi, T. Transformation of native cellulose crystals induced by saturated steam at high temperatures. Macromolecules 1987, 20, 2946–2949. [Google Scholar] [CrossRef]
- Lü, H.; Ren, M.; Zhang, M.; Chen, Y. Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent. Chin. J. Chem. Eng. 2013, 21, 551–557. [Google Scholar] [CrossRef]
- Yin, J.; Hao, L.; Yu, W.; Wang, E.; Zhao, M.; Xu, Q.; Liu, Y. Enzymatic hydrolysis enhancement of corn lignocellulose by supercritical CO2 combined with ultrasound pretreatment. Chin. J. Catal. 2014, 35, 763–769. [Google Scholar] [CrossRef]
- Ayala-Parra, P.; Liu, Y.; Sierra-Alvarez, R.; Field, J.A. Pretreatments to enhance the anaerobic biodegradability of chlorella protothecoides algal biomass. Environ. Prog. Sustain. 2018, 37, 418–424. [Google Scholar] [CrossRef]
- Manasa, P.; Paramjeet, S.; Narasimhulu, K. Ultrasound-assisted alkaline pretreatment to intensify enzymatic saccharification of crotalaria juncea using a statistical method. Biomass Convers. Biorefinery 2018, 8, 659–668. [Google Scholar]
- Park, S.H.; Lee, S.G.; Kim, S.H. Isothermal crystallization behavior and mechanical properties of polylactide/carbon nanotube nanocomposites. Compos. Part A Appl. Sci. 2013, 46, 11–18. [Google Scholar] [CrossRef]
- Liu, H.; Dai, Z.; Cao, Q.P.; Shi, X.J. Lignin/polyacrylonitrile carbon fibers: The effect of fractionation and purification on properties of derived carbon fibers. ACS Sustain. Chem. Eng. 2018, 6, 8554–8562. [Google Scholar] [CrossRef]
- Jin, J.; Yu, B.J.; Shi, Z.Q.; Wang, C.Y.; Chong, C.B. Lignin-based electrospun carbon nanofibrous webs as free-standing and binder-free electrodes for sodium ion batteries. J. Power. Sources 2014, 272, 800–807. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Z.; Xiang, H.; Chen, W.; Yin, E.; Chang, T.; Zhu, M. Reinforcement of lignin-based carbon fibers with functionalized carbon nanotubes. Compos. Sci. Technol. 2016, 128, 116–122. [Google Scholar] [CrossRef]
- Sen, S.; Patil, S.; Argyropoulos, D.S. Thermal properties of lignin in copolymers, blends, and composites: A review. Green. Chem. 2015, 17, 4862–4887. [Google Scholar] [CrossRef]
- Kubo, S.; Kadla, J.F. Poly (ethylene oxide)/organosolv lignin blends: Relationship between thermal properties, chemical structure, and blend behavior. Macromolecules 2004, 37, 6904–6911. [Google Scholar] [CrossRef]
- Cho, M.; Karaaslan, M.; Chowdhury, S.; Ko, F.; Renneckar, S. Skipping oxidative thermal stabilization for lignin-based carbon nanofibers. ACS Sustain. Chem. Eng. 2018, 6, 6434–6444. [Google Scholar]
- Maradur, S.P.; Kim, C.H.; Kim, S.Y.; Kim, B.H.; Kim, W.C.; Yang, K.S. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth. Met. 2012, 162, 453–459. [Google Scholar] [CrossRef]
- Xia, K.; Ouyang, Q.; Chen, Y.; Wang, X.; Qian, X.; Wang, L. Preparation and characterization of lignosulfonate-acrylonitrile copolymer as a novel carbon fiber precursor. ACS Sustain. Chem. Eng. 2016, 4, 159–168. [Google Scholar] [CrossRef]
- Kubo, S.; Kadla, J.F. Lignin-based carbon fibers: Effect of synthetic polymer blending on fiber properties. J. Polym. Environ. 2005, 13, 97–105. [Google Scholar] [CrossRef]
- Lin, J.; Kubo, S.; Yamada, T.; Koda, K.; Uraki, Y. Chemical thermostabilization for the preparation of carbon fibers from softwood lignin. BioResources 2012, 7, 5634–5646. [Google Scholar] [CrossRef]
- Qin, W.; Kadla, J.F. Effect of organoclay reinforcement on lignin-based carbon fibers. Ind. Eng. Chem. Res. 2011, 50, 12548–12555. [Google Scholar] [CrossRef]
- Ingildeev, D.; Hermanutz, F.; Bredereck, K.; Effenberger, F. Novel cellulose/polymer blend fibers obtained using ionic liquids. Macromol. Mater. Eng. 2012, 297, 585–594. [Google Scholar] [CrossRef]
- Baker, D.A.; Gallego, N.C.; Baker, F.S. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber. J. Appl. Polym. Sci. 2012, 124, 227–234. [Google Scholar] [CrossRef]
- Ma, Y.; Asaadi, S.; Johansson, L.S.; Ahvenainen, P.; Reza, M.; Alekhina, M.; Sixta, H. High-strength composite fibers from cellulose-lignin blends regenerated from ionic liquid solution. ChemSusChem 2015, 8, 4030–4039. [Google Scholar] [CrossRef]
- Olsson, C.; Sjoholm, E.; Reimann, A. Carbon fibres from precursors produced by dry-jet wet-spinning of kraft lignin blended with kraft pulps. Holzforschung 2017, 71, 275–283. [Google Scholar] [CrossRef]
- Bengtsson, A.; Bengtsson, J.; Sedin, M.; Sjöholm, E. Carbon fibers from lignin-cellulose precursors: Effect of stabilization conditions. ACS Sustain. Chem. Eng. 2019, 7, 8440–8448. [Google Scholar] [CrossRef] [Green Version]
- Byrne, N.; Leblais, A.; Fox, B. Preparation of polyacrylonitrile-natural polymer composite precursors for carbon fiber using ionic liquid co solvent solutions. J. Mater. Chem. A 2014, 2, 3424–3429. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, J.; Jiang, L.; Lubineau, G.; Chen, Y.; Wu, X.F.; Piere, R. Porous core-shell carbon fibers derived from lignin and cellulose nanofibrils. Mater. Lett. 2013, 109, 175–178. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Ko, H.U.; Kim, H.C.; Kim, J.; Kim, S.Y. Transparent and flexible haptic actuator based on cellulose acetate stacked membranes. Int. J. Precis. Eng. Manuf. 2015, 16, 1479–1485. [Google Scholar] [CrossRef]
- You, T.T.; Zhang, L.M.; Zhou, S.K.; Xu, F. Structural elucidation of lignin-carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Ind. Crops Prod. 2015, 71, 65–74. [Google Scholar] [CrossRef]
- Wang, S.C.; Li, Y.; Xiang, H.X.; Zhou, Z.; Chang, T.K.; Zhu, M.F. Low cost carbon fibers from bio-renewable Lignin/Poly(lactic acid) (PLA) blends. Compos. Sci. Technol. 2015, 119, 20–25. [Google Scholar] [CrossRef]
- Geng, L.H.; Cai, Y.H.; Lu, L.; Zhang, Y.P.; Li, Y.X.; Chen, B.Y.; Peng, X.F. Highly strong and conductive carbon fibers originated from bioinspired lignin/nanocellulose precursors obtained by flow-assisted alignment and in situ interfacial complexation. ACS Sustain. Chem. Eng. 2021, 9, 2591–2599. [Google Scholar] [CrossRef]
- Yang, J.Q.; Wang, Y.X.; Luo, J.L.; Chen, L.Y. Facile preparation of self-standing hierarchical porous nitrogen-doped carbon fibers for supercapacitors from plant protein–lignin electrospun fibers. ACS Omega 2018, 3, 4647–4656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahra, H.; Sawada, D.; Guizani, C.; Ma, Y.; Kumagai, S.; Yoshioka, T.; Sixta, H.; Hummel, M. Close packing of cellulose and chitosan in regenerated cellulose fibers improves carbon yield and structural properties of respective carbon fibers. Biomacromolecules 2020, 21, 4326–4335. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.J.; Zhao, G.J. Variations in the microstructure of carbon fibers prepared from liquefied wood during carbonization. J. Appl. Polym. Sci. 2011, 121, 3525–3530. [Google Scholar] [CrossRef]
- Dong, X.; Lu, C.; Zhou, P.; Zhang, S.; Wang, L.; Li, D. Polyacrylonitrile/lignin sulfonate blend fiber for low-cost carbon fiber. RSC Adv. 2015, 5, 42259–42265. [Google Scholar] [CrossRef]
- Liu, H.C.; Chien, A.T.; Newcomb, B.A.; Liu, Y.; Kumar, S. Processing, structure, and properties of lignin-and CNT-incorporated polyacrylonitrile-based carbon fibers. ACS Sustain. Chem. Eng. 2015, 3, 1943–1954. [Google Scholar]
- Husman, G. Paper Presented at the 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, 17 June 2014. Available online: http://energy.gov/sites/prod/files/2014/07/f17/lm048_husman_2014_o.pdf (accessed on 2 February 2016).
- Johnson, D.J.; Tomizuka, I.; Watanabe, O. The fine structure of lignin-based carbon fibres. Carbon 1975, 13, 321–325. [Google Scholar] [CrossRef]
- Qin, W.; Kadla, J.F. Carbon fibers based on pyrolytic lignin. J. Appl. Polym. Sci. 2012, 126, E204–E213. [Google Scholar] [CrossRef]
- Wikipedia Contributors, Electrospinning. 2005. Available online: Wikipedia.org/wiki/Electrospinning (accessed on 6 July 2016).
- Wang, S.X.; Yang, L.P.; Stubbs, L.P.; Li, X.; He, C.B. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl. Mater. Inter. 2013, 5, 12275–12282. [Google Scholar] [CrossRef] [PubMed]
- Nar, M.; Rizvi, H.R.; Dixon, R.A.; Chen, F.; Kovalcik, A.; D’Souza, N. Superior plant based carbon fibers from electrospun poly-(caffeyl alcohol) lignin. Carbon 2016, 103, 372–383. [Google Scholar] [CrossRef] [Green Version]
Carbon Fiber Precursor | Carbon Content (%) | Degree of Crystallinity (%) | Tensile Strength of CFs (GPa) | Modulus of CFs (GPa) | Refs |
---|---|---|---|---|---|
PAN | 67.81 | 35–50 | 3–7 | 100–500 | [40,41] |
Pitch | 81.7 | - | 1–3 | 200–800 | [40,41] |
Rayon | 62.1 | 30–40 | 0.5–1.2 | 40–100 | [42] |
Polyethylene (PE) | 85.7 | 55–65 | 2.5 | 139 | [12] |
Polybenzoxazole (PBO) | 70.6 | 55–58 | 1 | 245 | [12] |
Various types of lignin | 60–65 | - | 0.15–0.8 | N/A | [4] |
Steam-exploded hardwood lignin | - | - | 0.66 ± 0.23 | 40.7 ± 6.3 | [43] |
Softwood kraft lignin | 55.1 | - | 1.06 ± 0.07 | 52 ± 2 | [17] |
Birch wood lignin | 63.7 | - | 0.66 | 40.7 ± 6.3 | [43] |
Organosolv hardwood lignin | 64.3 | - | 0.355 ± 0.053 | 39.1 ± 13.3 | [44] |
Hardwood kraft lignin | 58.5 | - | 0.52 ± 0.182 | 28.6 ± 3.2 | [45] |
Acetylated softwood kraft lignin | 61.3–62.8 | - | 1.06 ± 0.07 | 52 ± 2 | [46] |
Softwood/hardwood kraft lignin | 63.8 | - | 0.233–0.377 | 25–33 | [47] |
Switchgrass/boxwood lignin | 60.3 | - | 0.23–0.75 | 30.4–41.8 | [5,48] |
Lignin (25%)/PAN blend | 65.1 | - | 2.25 | 217 | [49] |
Lignin (30%)/PAN blend | 64.5 | - | 1.72 ± 0.2 | 230 ± 7 | [50] |
Lignosulfonate-AN copolymer | 40.4–48.5 (500 °C) | - | 0.54 | - | [51] |
Hardwood kraft lignin/PEO | 57.3–59.7 | - | 0.458 ± 0.097 | 59 ± 8 | [52] |
Carbon Fiber Precursor | Spinning Process | Mechanical Property | Advantage of Characteristic | Refs |
---|---|---|---|---|
Modified softwood kraft lignin/PLA | Melt-spinning | Tensile strength of 20 MPa Modulus of elasticity 10 MPa | Enhanced the miscibility | [45] |
Lignin/PLA | Melt-spinning | Tensile strength of 258.6–159.2 MPa Modulus of elasticity 1.7–11.6 GPa | Increased the spinnability | [148] |
Lignin/CNF–chitosan | Microfluidic spinning | Tensile strength of 1648 MPa | high orientation degree and compact microstructure of the filament | [149] |
Plant protein–lignin | Electrospinning | - | well-engineered structural characteristics | [150] |
Cellulose–chitosan | Dry-jet wet spinning | Modulus of 22.2 ± 1.3 GPa | Improved the carbon yield and structural properties | [151] |
Carbon Fiber Precursor | Spinning Process | Set-Up | Property | Advantage | Refs |
---|---|---|---|---|---|
lignin (25 wt%)/PAN | Wet-spinning | Tensile strength of 2.25 GPa Modulus of 217 GPa | Reduced fiber porosity | [155] | |
Acetylated softwood kraft lignin | Dry-spinning | Tensile strength of 1.06 ± 0.07 GPa Modulus of 52 ± 2 GPa | Enhanced carbon layer plane orientation of the fibers | [17,46] | |
Modified hardwood kraft lignin | Melt-spinning | Tensile strength of 1.07 GPa | Improved mechanical properties | [76] | |
Lignin–cellulose acetate blends | Electrospinning | Tensile strength of 49 ± 4 MPa Modulus of 3.0 ± 0.5 GPa | A large molecular weight, uniform molecular weight distribution, excellent thermal stability, and good spinnability of the PFs | [89] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Gao, X.; Nguyen, T.T.; Wu, J.; Guo, M.; Liu, W.; Du, C. Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers—Processing, Properties, and Applications in Sports Equipment: A Review. Polymers 2022, 14, 2591. https://doi.org/10.3390/polym14132591
Wu Y, Gao X, Nguyen TT, Wu J, Guo M, Liu W, Du C. Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers—Processing, Properties, and Applications in Sports Equipment: A Review. Polymers. 2022; 14(13):2591. https://doi.org/10.3390/polym14132591
Chicago/Turabian StyleWu, Yueting, Xing Gao, Tat Thang Nguyen, Jie Wu, Minghui Guo, Wenhao Liu, and Chunhua Du. 2022. "Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers—Processing, Properties, and Applications in Sports Equipment: A Review" Polymers 14, no. 13: 2591. https://doi.org/10.3390/polym14132591
APA StyleWu, Y., Gao, X., Nguyen, T. T., Wu, J., Guo, M., Liu, W., & Du, C. (2022). Green and Low-Cost Natural Lignocellulosic Biomass-Based Carbon Fibers—Processing, Properties, and Applications in Sports Equipment: A Review. Polymers, 14(13), 2591. https://doi.org/10.3390/polym14132591