Kinetics of the Glass Transition of Silica-Filled Styrene–Butadiene Rubber: The Effect of Resins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixing and Vulcanization
2.3. Methods
2.3.1. Broadband Dielectric Spectroscopy (BDS)
2.3.2. Conventional Differential Scanning Calorimetry (DSC)
2.3.3. Fast Differential Scanning Calorimetry (FDSC)
2.3.4. Transmission Electron Microscope (TEM)
2.3.5. Dynamic Mechanical Analysis (DMA)
3. Results and Discussion
3.1. Structural Investigation
3.2. Linearity of the Mechanical Response
3.3. Composition Dependence of the Glass Transition
3.4. Dielectric Relaxation
3.5. Thermal Relaxation
3.5.1. Temperature Modulation
3.5.2. Vitrification
3.6. Influence of the Composition on the Relaxation Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Datta, S. Elastomer Blends. In The Science and Technology of Rubber, 4th ed.; Erman, B., Mark, J.E., Roland, C.M., Eds.; Elsevier Acad. Press: Amsterdam, The Netherlands, 2013; pp. 547–589. [Google Scholar] [CrossRef]
- Klat, D.; Kępas-Suwara, A.; Lacayo-Pineda, J.; Cook, S. Morphology and nanomechanical characteristics of nr/sbr blends. Rubber Chem. Technol. 2018, 91, 151–166. [Google Scholar] [CrossRef]
- Utracki, L.A.; Mukhopadhyay, P.; Gupta, R.K. Polymer Blends: Introduction. In Polymer Blends Handbook, 2nd ed.; Utracki, L.A., Wilkie, C.A., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 3–136. [Google Scholar] [CrossRef]
- Donnet, J.-B.; Custodero, E. Reinforcement of Elastomers by Particulate Fillers. In The Science and Technology of Rubber, 4th ed.; Erman, B., Mark, J.E., Roland, C.M., Eds.; Elsevier Acad. Press: Amsterdam, The Netherlands, 2013; pp. 383–415. [Google Scholar] [CrossRef]
- Bokobza, L. The Reinforcement of Elastomeric Networks by Fillers. Macromol. Mater. Eng. 2004, 289, 607–621. [Google Scholar] [CrossRef]
- Sisanth, K.S.; Thomas, M.G.; Abraham, J.; Thomas, S. General introduction to rubber compounding. In Progress in Rubber Nanocomposites; Thomas, S., Maria, H.J., Eds.; Woodhead Publishing: Amsterdam, The Netherlands, 2017; pp. 1–39. [Google Scholar]
- Rathi, A.; Hernández, M.; Garcia, S.J.; Dierkes, W.K.; Noordermeer, J.W.M.; Bergmann, C.; Trimbach, J.; Blume, A. Identifying the effect of aromatic oil on the individual component dynamics of S-SBR/BR blends by broadband dielectric spectroscopy. J. Polym. Sci. Part B Polym. Phys. 2018, 56, 842–854. [Google Scholar] [CrossRef]
- Sharma, P.; Roy, S.; Karimi-Varzaneh, H.A. Impact of Plasticizer Addition on Molecular Properties of Polybutadiene Rubber and its Manifestations to Glass Transition Temperature. Macromol. Theory Simul. 2019, 28, 1900003. [Google Scholar] [CrossRef]
- Coran, A.Y. Vulcanization. In The Science and Technology of Rubber, 4th ed.; Erman, B., Mark, J.E., Roland, C.M., Eds.; Elsevier Acad. Press: Amsterdam, The Netherlands, 2013; pp. 337–381. [Google Scholar] [CrossRef]
- Ortega, L.; Cerveny, S.; Sill, C.; Isitman, N.A.; Rodriguez-Garraza, A.L.; Meyer, M.; Westermann, S.; Schwartz, G.A. The effect of vulcanization additives on the dielectric response of styrene-butadiene rubber compounds. Polymer 2019, 172, 205–212. [Google Scholar] [CrossRef]
- Mostoni, S.; Milana, P.; Credico, B.; D’Arienzo, M.; Scotti, R. Zinc-Based Curing Activators: New Trends for Reducing Zinc Content in Rubber Vulcanization Process. Catalysts 2019, 9, 664. [Google Scholar] [CrossRef] [Green Version]
- Sotta, P.; Albouy, P.-A.; Abou Taha, M.; Moreaux, B.; Fayolle, C. Crosslinked Elastomers: Structure-Property Relationships and Stress-Optical Law. Polymers 2021, 14, 9. [Google Scholar] [CrossRef]
- Blume, A. Analytical properties of silica-a key for understanding silica reinforcement. Kautsch. Gummi Kunstst. 2000, 53, 338–344. [Google Scholar]
- Heinrich, G.; Vilgis, T.A. Why Silica Technology Needs S-SBR in High Performance Tires? The Physics of Confined Polymers in Filled Rubbers. Kautsch. Gummi Kunstst. 2008, 61, 370–376. [Google Scholar]
- Dhanorkar, R.J.; Mohanty, S.; Gupta, V.K. Synthesis of Functionalized Styrene Butadiene Rubber and Its Applications in SBR–Silica Composites for High Performance Tire Applications. Ind. Eng. Chem. Res. 2021, 60, 4517–4535. [Google Scholar] [CrossRef]
- Rodgers, B.; Waddell, W. The Science of Rubber Compounding. In The Science and Technology of Rubber, 4th ed.; Erman, B., Mark, J.E., Roland, C.M., Eds.; Elsevier Acad. Press: Amsterdam, The Netherlands, 2013; p. 417. [Google Scholar] [CrossRef]
- Khan, I.; Poh, B.T. Effect of molecular weight and testing rate on adhesion property of pressure-sensitive adhesives prepared from epoxidized natural rubber. Mater. Des. 2011, 32, 2513–2519. [Google Scholar] [CrossRef]
- Wypych, G. (Ed.) Tackifiers. In Handbook of Surface Improvement and Modification; ChemTec Publishing: Toronto, ON, Canada, 2018; pp. 73–95. [Google Scholar] [CrossRef]
- Donth, E. The Glass Transition. Relaxation Dynamics in Liquids and Disordered Materials; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar] [CrossRef]
- Zheng, Q.; Zhang, Y.; Montazerian, M.; Gulbiten, O.; Mauro, J.C.; Zanotto, E.D.; Yue, Y. Understanding Glass through Differential Scanning Calorimetry. Chem. Rev. 2019, 119, 7848–7939. [Google Scholar] [CrossRef]
- Wypych, G. (Ed.) Effect of Plasticizers on Properties of Plasticized Materials. In Handbook of Plasticizers, 3rd ed.; ChemTec Publishing: Toronto, ON, Cananda, 2017; pp. 209–332. [Google Scholar] [CrossRef]
- Stukalin, E.B.; Douglas, J.F.; Freed, K.F. Plasticization and antiplasticization of polymer melts diluted by low molar mass species. J. Chem. Phys. 2010, 132, 84504. [Google Scholar] [CrossRef]
- Shee, B.; Chanda, J.; Dasgupta, M.; Sen, A.K.; Bhattacharyya, S.K.; Das Gupta, S.; Mukhopadhyay, R. A study on hydrocarbon resins as an advanced material for performance enhancement of radial passenger tyre tread compound. J. Appl. Polym. Sci. 2022, 139, 51950. [Google Scholar] [CrossRef]
- Vleugels, N.; Pille-Wolf, W.; Dierkes, W.K.; Noordermeer, J.W.M. Understanding the influence of oligomeric resins on traction and rolling resistance of silica-reinforced tire treads. Rubber Chem. Technol. 2015, 88, 65–79. [Google Scholar] [CrossRef] [Green Version]
- L’Heveder, S.; Sportelli, F.; Isitman, N.A. Investigation of solubility in plasticised rubber systems for tire applications. Plast. Rubber Compos. 2016, 45, 319–325. [Google Scholar] [CrossRef]
- Genix, A.-C.; Baeza, G.P.; Oberdisse, J. Recent advances in structural and dynamical properties of simplified industrial nanocomposites. Eur. Polym. J. 2016, 85, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Koutsoumpis, S.; Raftopoulos, K.N.; Oguz, O.; Papadakis, C.M.; Menceloglu, Y.Z.; Pissis, P. Dynamic glass transition of the rigid amorphous fraction in polyurethane-urea/SiO2 nanocomposites. Soft Matter 2017, 13, 4580–4590. [Google Scholar] [CrossRef]
- Füllbrandt, M.; Purohit, P.J.; Schönhals, A. Combined FTIR and Dielectric Investigation of Poly(vinyl acetate) Adsorbed on Silica Particles. Macromolecules 2013, 46, 4626–4632. [Google Scholar] [CrossRef]
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Stöckelhuber, K.W.; Wießner, S.; Das, A.; Heinrich, G. Filler flocculation in polymers—A simplified model derived from thermodynamics and game theory. Soft Matter 2017, 13, 3701–3709. [Google Scholar] [CrossRef]
- Torbati-Fard, N.; Hosseini, S.M.; Razzaghi-Kashani, M. Effect of the silica-rubber interface on the mechanical, viscoelastic, and tribological behaviors of filled styrene-butadiene rubber vulcanizates. Polym. J. 2020, 52, 1223–1234. [Google Scholar] [CrossRef]
- Presto, D.; Meyerhofer, J.; Kippenbrock, G.; Narayanan, S.; Ilavsky, J.; Moctezuma, S.; Sutton, M.; Foster, M.D. Influence of Silane Coupling Agents on Filler Network Structure and Stress-Induced Particle Rearrangement in Elastomer Nanocomposites. ACS Appl. Mater. Interfaces 2020, 12, 47891–47901. [Google Scholar] [CrossRef]
- Zhang, S.; Leng, X.; Han, L.; Li, C.; Lei, L.; Bai, H.; Ma, H.; Li, Y. The effect of functionalization in elastomers: Construction of networks. Polymer 2021, 213, 123331. [Google Scholar] [CrossRef]
- Mazumder, A.; Chanda, J.; Bhattacharyya, S.; Dasgupta, S.; Mukhopadhyay, R.; Bhowmick, A.K. Improved tire tread compounds using functionalized styrene butadiene rubber-silica filler/hybrid filler systems. J. Appl. Polym. Sci. 2021, 138, 51236. [Google Scholar] [CrossRef]
- Pourhossaini, M.-R.; Razzaghi-Kashani, M. Effect of silica particle size on chain dynamics and frictional properties of styrene butadiene rubber nano and micro composites. Polymer 2014, 55, 2279–2284. [Google Scholar] [CrossRef]
- Padmanathan, H.R.; Federico, C.E.; Addiego, F.; Rommel, R.; Kotecký, O.; Westermann, S.; Fleming, Y. Influence of Silica Specific Surface Area on the Viscoelastic and Fatigue Behaviors of Silica-Filled SBR Composites. Polymers 2021, 13, 3094. [Google Scholar] [CrossRef]
- Giunta, G. Multiscale Modelling of Polymers at Interfaces. Ph.D. Thesis, The University of Manchester, Manchester, UK, 2020. [Google Scholar]
- Schawe, J.E.K. Investigations of the glass transitions of organic and inorganic substances. J. Therm. Anal. 1996, 47, 475–484. [Google Scholar] [CrossRef]
- Gutzow, I.S.; Schmelzer, J.W.P. The Vitreous State. Thermodynamics, Structure, Rheology, and Crystallization, 2nd ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Schawe, J.E.K. Vitrification in a wide cooling rate range: The relations between cooling rate, relaxation time, transition width, and fragility. J. Chem. Phys. 2014, 141, 184905. [Google Scholar] [CrossRef]
- Schawe, J.E.K. Measurement of the thermal glass transition of polystyrene in a cooling rate range of more than six decades. Thermochim. Acta 2015, 603, 128–134. [Google Scholar] [CrossRef]
- Chua, Y.Z.; Schulz, G.; Shoifet, E.; Huth, H.; Zorn, R.; Schmelzer, J.W.P.; Schick, C. Glass transition cooperativity from broad band heat capacity spectroscopy. Colloid Polym. Sci. 2014, 292, 1893–1904. [Google Scholar] [CrossRef]
- Shamim, N.; Koh, Y.P.; Simon, S.L.; McKenna, G.B. Glass transition temperature of thin polycarbonate films measured by flash differential scanning calorimetry. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 1462–1468. [Google Scholar] [CrossRef]
- Lindemann, N.; Schawe, J.E.K.; Lacayo-Pineda, J. Kinetics of the glass transition of styrene-butadiene-rubber: Dielectric spectroscopy and fast differential scanning calorimetry. J. Appl. Polym. Sci. 2021, 138, 49769. [Google Scholar] [CrossRef]
- ASTM D5289; Standard Test Method for Rubber Property—Vulcanization Using Rotorless Cure Meters; Annual Book of Standards, Vol. 09.01; ASTM International: West Conshohocken, PA, USA, 2021.
- Poel, G.V.; Istrate, D.; Magon, A.; Mathot, V. Performance and calibration of the Flash DSC 1, a new, MEMS-based fast scanning calorimeter. J. Anal. Calorim. 2012, 110, 1533–1546. [Google Scholar] [CrossRef]
- Schawe, J.E.K.; Hess, K.-U. The kinetics of the glass transition of silicate glass measured by fast scanning calorimetry. Thermochim. Acta 2019, 677, 85–90. [Google Scholar] [CrossRef]
- Perez-de-Eulate, N.G.; Di Lisio, V.; Cangialosi, D. Glass Transition and Molecular Dynamics in Polystyrene Nanospheres by Fast Scanning Calorimetry. ACS Macro Lett. 2017, 6, 859–863. [Google Scholar] [CrossRef]
- Gao, S.; Simon, S.L. Measurement of the limiting fictive temperature over five decades of cooling and heating rates. Thermochim. Acta 2015, 603, 123–127. [Google Scholar] [CrossRef]
- Reimer, L. Transmission Electron Microscopy. Physics of Image Formation and Microanalysis, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar] [CrossRef]
- Payne, A.R. Effect of dispersion on the dynamic properties of filler-loaded rubbers. J. Appl. Polym. Sci. 1965, 9, 2273–2284. [Google Scholar] [CrossRef]
- Harwood, J.A.C.; Mullins, L.; Payne, A.R. Stress softening in natural rubber vulcanizates. Part II. Stress softening effects in pure gum and filler loaded rubbers. J. Appl. Polym. Sci. 1965, 9, 3011–3021. [Google Scholar] [CrossRef]
- Klüppel, M. The Role of Disorder in Filler Reinforcement of Elastomers on Various Length Scales. In Filler-Reinforced Elastomers Scanning Force Microscopy; Capella, B., Geuss, M., Klüppel, M., Munz, M., Schulz, E., Sturm, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 1–86. [Google Scholar] [CrossRef]
- Syed, I.H.; Klat, D.; Braer, A.; Fleck, F.; Lacayo-Pineda, J. Characterizing the influence of reinforcing resin on the structure and the mechanical response of filled isoprene rubber. Soft Mater. 2018, 16, 275–288. [Google Scholar] [CrossRef]
- Lindemann, N.; Finger, S.; Karimi-Varzaneh, H.A.; Lacayo-Pineda, J. Rigidity of plasticizers and their miscibility in silica-filled polybutadiene rubber by broadband dielectric spectroscopy. J. Appl. Polym. Sci. 2022, 10, 52215. [Google Scholar] [CrossRef]
- Gordon, M.; Taylor, J.S. Ideal copolymers and the second-order transitions of synthetic rubbers. i. non-crystalline copolymers. J. Appl. Chem. 1952, 2, 493–500. [Google Scholar] [CrossRef]
- Schneider, H.A. The Gordon-Taylor equation. Additivity and interaction in compatible polymer blends. Makromol. Chem. 1988, 189, 1941–1955. [Google Scholar] [CrossRef]
- Couchman, P.R.; Karasz, F.E. A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures. Macromolecules 1978, 11, 117–119. [Google Scholar] [CrossRef]
- Lu, X.; Weiss, R.A. Relationship between the glass transition temperature and the interaction parameter of miscible binary polymer blends. Macromolecules 1992, 25, 3242–3246. [Google Scholar] [CrossRef]
- Utracki, L.A. Thermodynamics of Polymer Blends. In Polymer Blends Handbook, 2nd ed.; Utracki, L.A., Wilkie, C.A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 171–290. [Google Scholar] [CrossRef]
- Yin, H.; Schönhals, A. Broadband Dielectric Spectroscopy on Polymer Blends. In Polymer Blends Handbook, 2nd ed.; Utracki, L.A., Wilkie, C.A., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 1299–1356. [Google Scholar] [CrossRef]
- Omar, H.; Smales, G.J.; Henning, S.; Li, Z.; Wang, D.-Y.; Schönhals, A.; Szymoniak, P. Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers. Polymers 2021, 13, 1634. [Google Scholar] [CrossRef]
- Otegui, J.; Schwartz, G.A.; Cerveny, S.; Colmenero, J.; Loichen, J.; Westermann, S. Influence of Water and Filler Content on the Dielectric Response of Silica-Filled Rubber Compounds. Macromolecules 2013, 46, 2407–2416. [Google Scholar] [CrossRef] [Green Version]
- Baeza, G.P.; Oberdisse, J.; Alegria, A.; Saalwächter, K.; Couty, M.; Genix, A.-C. Depercolation of aggregates upon polymer grafting in simplified industrial nanocomposites studied with dielectric spectroscopy. Polymer 2015, 73, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Steeman, P.A.M.; van Turnhout, J. Dielectric Properties of Inhomogeneous Media. In Broadband Dielectric Spectroscopy; Kremer, F., Schönhals, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 495–520. [Google Scholar] [CrossRef]
- Carretero–González, J.; Ezquerra, T.A.; Amnuaypornsri, S.; Toki, S.; Verdejo, R.; Sanz, A.; Sakdapipanich, J.; Hsiao, B.S.; López–Manchado, M.A. Molecular dynamics of natural rubber as revealed by dielectric spectroscopy: The role of natural cross–linking. Soft Matter 2010, 6, 3636. [Google Scholar] [CrossRef] [Green Version]
- Cheng, S.; Mirigian, S.; Carrillo, J.-M.Y.; Bocharova, V.; Sumpter, B.G.; Schweizer, K.S.; Sokolov, A.P. Revealing spatially heterogeneous relaxation in a model nanocomposite. J. Chem. Phys. 2015, 143, 194704. [Google Scholar] [CrossRef] [Green Version]
- Schönhals, A.; Kremer, F. Analysis of Dielectric Spectra. In Broadband Dielectric Spectroscopy; Kremer, F., Schönhals, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 59–98. [Google Scholar] [CrossRef]
- Psarras, G.C.; Gatos, K.G. Relaxation Phenomena in Elastomeric Nanocomposites. In Recent Advances in Elastomeric Nanocomposites; Mittal, V., Kim, J.K., Pal, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 89–118. [Google Scholar] [CrossRef]
- Schwartz, G.A.; Ortega, L.; Meyer, M.; Isitman, N.A.; Sill, C.; Westermann, S.; Cerveny, S. Extended Adam–Gibbs Approach To Describe the Segmental Dynamics of Cross-Linked Miscible Rubber Blends. Macromolecules 2018, 51, 1741–1747. [Google Scholar] [CrossRef] [Green Version]
- Schönhals, A.; Szymoniak, P. Dynamics of Composite Materials; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Schawe, J.E.K. Principles for the interpretation of modulated temperature DSC measurements. Part 1. Glass transition. Thermochim. Acta 1995, 261, 183–194. [Google Scholar] [CrossRef]
- Hensel, A.; Dobbertin, J.; Schawe, J.E.K.; Boller, A.; Schick, C. Temperature modulated calorimetry and dielectric spectroscopy in the glass transition region of polymers. J. Therm. Anal. 1996, 46, 935–954. [Google Scholar] [CrossRef]
- Moynihan, C.T.; Easteal, A.J.; De Bolt, M.A.; Tucker, J. Dependence of the Fictive Temperature of Glass on Cooling Rate. J Am. Ceram. Soc. 1976, 59, 12–16. [Google Scholar] [CrossRef]
- Richardson, M.J.; Savill, N.G. Derivation of accurate glass transition temperatures by differential scanning calorimetry. Polymer 1975, 16, 753–757. [Google Scholar] [CrossRef]
- Schawe, J.E.K. An analysis of the meta stable structure of poly(ethylene terephthalate) by conventional DSC. Thermochim. Acta 2007, 461, 145–152. [Google Scholar] [CrossRef]
- Vogel, H. Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys. Z. 1921, 22, 645–646. [Google Scholar]
- Fulcher, G.S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 1925, 8, 339–355. [Google Scholar] [CrossRef]
- Tammann, G.; Hesse, W. Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 1926, 156, 245–257. [Google Scholar] [CrossRef]
- Alberdi, J.M.; Alegríaa, A.; Macho, E.; Colmenero, J. Relationship between relaxation time and viscosity above the glass-transition in two glassy polymers (polyarylate and polysulfone). J. Polym. Sci. C Polym. Lett. 1986, 24, 399–402. [Google Scholar] [CrossRef]
- Böhmer, R.; Angell, C.A. Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Phys. Rev. B Condens. Matter 1992, 45, 10091–10094. [Google Scholar] [CrossRef]
- Spieckermann, F.; Steffny, I.; Bian, X.; Ketov, S.; Stoica, M.; Eckert, J. Fast and direct determination of fragility in metallic glasses using chip calorimetry. Heliyon 2019, 5, e01334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Q.; McKenna, G.B. Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids. J. Non-Cryst. Solids 2006, 352, 2977–2985. [Google Scholar] [CrossRef]
- Angell, C.A. Spectroscopy simulation and scattering, and the medium range order problem in glass. J. Non-Cryst. Solids 1985, 73, 1–17. [Google Scholar] [CrossRef]
- Robles-Hernández, B.; Monnier, X.; Pomposo, J.A.; Gonzalez-Burgos, M.; Cangialosi, D.; Alegría, A. Glassy Dynamics of an All-Polymer Nanocomposite Based on Polystyrene Single-Chain Nanoparticles. Macromolecules 2019, 52, 6868–6877. [Google Scholar] [CrossRef]
- Huth, H.; Beiner, M.; Donth, E. Temperature dependence of glass-transition cooperativity from heat-capacity spectroscopy: Two post-Adam-Gibbs variants. Phys. Rev. B 2000, 61, 15092–15101. [Google Scholar] [CrossRef]
- Schneider, K.; Donth, E. Unterschiedliche Meßsignale am Glasübergang amorpher Polymere. 1. Die Lage der charakteristischen Frequenzen quer zur Glasübergangszone. Acta Polym. 1986, 37, 333–335. [Google Scholar] [CrossRef]
- Dhotel, A.; Rijal, B.; Delbreilh, L.; Dargent, E.; Saiter, A. Combining Flash DSC, DSC and broadband dielectric spectroscopy to determine fragility. J. Anal. Calorim. 2015, 121, 453–461. [Google Scholar] [CrossRef]
- Napolitano, S.; Glynos, E.; Tito, N.B. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 2017, 80, 36602. [Google Scholar] [CrossRef]
Ingredients | Quantity [phr 1] |
---|---|
SBR 2 | 100 |
Silica | 60 |
TESPD 3 | 4.3 |
6PPD 4 | 2.0 |
Wax 5 | 2.0 |
Zink oxide | 2.5 |
Stearic acid | 2.5 |
DPG 6 | 1.0 |
CBS 7 | 2.0 |
Sulfur | 2.0 |
AMS 8 or IC 9 | 0/20/40/60/80 |
Amount Resin [phr] | Amount Total Mixture [phr] | Amount Resin [wt%] |
---|---|---|
0 | 178.3 | 0 |
20 | 198.3 | 10.1 |
40 | 218.3 | 18.3 |
60 | 238.3 | 25.2 |
80 | 258.3 | 31.0 |
Amount Resin [phr] | t90 [min] | |
---|---|---|
AMS | IC | |
0 | 13 | |
20 | 18 | 14 |
40 | 19 | 17 |
60 | 21 | 19 |
80 | 22 | 20 |
Resin | k0 | kfit | |
---|---|---|---|
AMS | 0.35 | 0.65 | 0.44 |
IC | 0.33 | 0.69 | 0.30 |
Sample | A | B [K] | Tv [K] | m | Tg (100 mHz) [°C] |
---|---|---|---|---|---|
Without resin | 10.4 | 355 | 186 | 92 | −59 |
20 AMS | 10.8 | 397 | 189 | 91 | −52 |
20 IC | 10.7 | 379 | 191 | 94 | −52 |
40 AMS | 9.3 | 242 | 208 | 121 | −44 |
40 IC | 10.2 | 316 | 200 | 106 | −47 |
60 AMS | 9.1 | 222 | 214 | 129 | −39 |
60 IC | 9.7 | 277 | 206 | 114 | −43 |
80 AMS | 8.9 | 197 | 220 | 142 | −35 |
80 IC | 9.6 | 269 | 208 | 115 | −41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindemann, N.; Schawe, J.E.K.; Lacayo-Pineda, J. Kinetics of the Glass Transition of Silica-Filled Styrene–Butadiene Rubber: The Effect of Resins. Polymers 2022, 14, 2626. https://doi.org/10.3390/polym14132626
Lindemann N, Schawe JEK, Lacayo-Pineda J. Kinetics of the Glass Transition of Silica-Filled Styrene–Butadiene Rubber: The Effect of Resins. Polymers. 2022; 14(13):2626. https://doi.org/10.3390/polym14132626
Chicago/Turabian StyleLindemann, Niclas, Jürgen E. K. Schawe, and Jorge Lacayo-Pineda. 2022. "Kinetics of the Glass Transition of Silica-Filled Styrene–Butadiene Rubber: The Effect of Resins" Polymers 14, no. 13: 2626. https://doi.org/10.3390/polym14132626
APA StyleLindemann, N., Schawe, J. E. K., & Lacayo-Pineda, J. (2022). Kinetics of the Glass Transition of Silica-Filled Styrene–Butadiene Rubber: The Effect of Resins. Polymers, 14(13), 2626. https://doi.org/10.3390/polym14132626