A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipment
2.2. Spectrophotometric Determination of λmax of HCT and Calibration Curve
2.3. Synthesis of the SMC-PCL Nanoparticle Carrier System
2.4. Physical Assessment of the SMS-PCL Nanoparticles in Terms of Size, Stability, and Charge Distribution
2.5. Determination of the Drug-Entrapment Efficacy of HCT within the SMS PCL Nanoparticles
2.6. Chemical Evaluation Undertaken on the SMS-PCL Nanoparticles, HCT, and HCT-Loaded Nanoparticles
2.7. Thermal Transition Evaluation of the SMS-PCL Nanoparticles, HCT, and HCT-Loaded Nanoparticles
2.8. Thermal Evaluation of the SMS-PCL Nanoparticles, HCT, HCT-Loaded Nanoparticles
2.9. Synthesis and Evaluation of the CMC Hydrogel System
2.10. In Vitro Drug Release Undertaken on the SMS-PCL Nanoparticles as Well as the Loaded CMC Hydrogel
2.11. In Silico Analysis of the HCT Interaction with Glucocorticoid and Mineralocorticoid Receptors
2.12. Analysis of the Surface Morphology of the HCT-Loaded Nanoparticles Using SEM
2.13. In Vitro Cytotoxicity
2.13.1. Keratinocytes Culture Employing HaCaT Cell Lines
2.13.2. Cell Morphology and Cell Count
2.13.3. Standard Drug Preparation
2.13.4. In Vitro Cytotoxicity Assay Preparations
2.13.5. MTT Cytotoxicity Assay to Determine the Safety and Tolerability of the HCT-Loaded CMC Hydrogel
2.13.6. Light-Microscopy Analysis to Evaluate Internalization of the Therapeutic Compounds within the HaCaT Cells
3. Results and Discussion
3.1. Spectrophotometric Analysis Undertaken to Determine λmax of HCT and Calibration Curve
3.2. Physical Assessment of the SMS-PCL Nanoparticles in Terms of Size, Stability, Charge Distribution, and Drug Entrapment
3.3. Chemical Evaluation Undertaken on the SMS-PCL Nanoparticles, HCT, and HCT-Loaded Nanoparticles
3.4. Thermal-Transition Evaluation of the SMS-PCL Nanoparticles, HCT, and HCT-Loaded Nanoparticles
3.5. Thermal Evaluation of the SMS-PCL Nanoparticles, HCT, and HCT-Loaded Nanoparticles
3.6. Evaluation of the CMC Hydrogel System for Sol-Gel Transition Temperature
3.7. In Vitro Drug Release Undertaken on the SMS-PCL Nanoparticles as Well as the Loaded CMC Hydrogel
3.8. In Silico Analysis of the HCT Interaction with Glucocorticoid and Mineralocorticoid Receptors
3.9. Analysis of the Surface Morphology of the HCT-Loaded Nanoparticles Using SEM
3.10. In Vitro Cytotoxicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Ji, J.; Su, T.; Wang, H.-W.; Su, Z.-L. The Association of Psoriasis and Obesity: Focusing on IL-17A-Related Immunological Mechanisms. Int. J. Dermatol. Venereol. 2021, 4, 116–121. [Google Scholar] [CrossRef]
- Ni, X.; Lai, Y. Keratinocyte: A trigger or an executor of psoriasis? J. Leukoc. Biol. 2020, 108, 485–491. [Google Scholar] [CrossRef]
- Griffiths, C.E.; Barker, J.N. Pathogenesis and clinical features of psoriasis. Lancet 2007, 370, 263–271. [Google Scholar] [CrossRef]
- Grozdev, I.; Korman, N.J. Psoriasis: Epidemiology, potential triggers, disease course. In Advances in Psoriasis; Springer: New York, NY, USA, 2021; pp. 27–37. [Google Scholar]
- Maqbool, S.; Ihtesham, A.; Langove, M.N.; Jamal, S.; Jamal, T.; Safian, H.A. Neuro-dermatological association between psoriasis and depression: An immune-mediated inflammatory process validating skin-brain axis theory. AIMS Neurosci. 2021, 8, 340. [Google Scholar] [CrossRef]
- Armstrong, A.W.; Read, C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. Jama 2020, 323, 1945–1960. [Google Scholar] [CrossRef]
- Muhammad, A. Essential medicine list, policies, and the World Health Organization. Encycl. Pharm. Pract. Clin. Pharm. 2019, 1, 239–249. [Google Scholar]
- Ahluwalia, A. Topical glucocorticoids and the skin-mechanisms of action: An update. Mediat. Inflamm. 1998, 7, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Hudson, W.H.; Youn, C.; Ortlund, E.A. Crystal structure of the mineralocorticoid receptor DNA binding domain in complex with DNA. PLoS ONE 2014, 9, e107000. [Google Scholar] [CrossRef] [PubMed]
- Rastinejad, F.; Huang, P.; Chandra, V.; Khorasanizadeh, S. Understanding nuclear receptor form and function using structural biology. J. Mol. Endocrinol. 2013, 51, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigas, J.; Sevilla, L.M.; Carceller, E.; Boix, J.; Pérez, P. Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation. Cell Death Dis. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Sarkar, M.K.; Kaplan, N.; Tsoi, L.C.; Xing, X.; Liang, Y.; Swindell, W.R.; Hoover, P.; Aravind, M.; Baida, G.; Clark, M. Endogenous glucocorticoid deficiency in psoriasis promotes inflammation and abnormal differentiation. J. Investig. Dermatol. 2017, 137, 1474–1483. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, N.K.; Aneesa, A.; Abdul Hadi, A.; Shaira, N. Topical corticosteroids in clinical practice. Med. J. Malays. 2019, 74, 187–189. [Google Scholar]
- Gold, L.S.; Bhatia, N.; Tallman, A.M.; Rubenstein, D.S. A phase 2b, randomized clinical trial of tapinarof cream for the treatment of plaque psoriasis: Secondary efficacy and patient-reported outcomes. J. Am. Acad. Dermatol. 2021, 84, 624–631. [Google Scholar] [CrossRef]
- Giri, T.K. Solid lipid nanoparticles for the delivery of drug molecules. In Materials for Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 551–576. [Google Scholar] [CrossRef]
- Altamimi, M.A.; Elzayat, E.M.; Qamar, W.; Alshehri, S.M.; Sherif, A.Y.; Haq, N.; Shakeel, F. Evaluation of the bioavailability of hydrocortisone when prepared as solid dispersion. Saudi Pharm. J. 2019, 27, 629–636. [Google Scholar] [CrossRef]
- Vashahi, F.; Martinez, M.R.; Dashtimoghadam, E.; Fahimipour, F.; Keith, A.N.; Bersenev, E.A.; Ivanov, D.A.; Zhulina, E.B.; Popryadukhin, P.; Matyjaszewski, K. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. Sci. Adv. 2022, 8, eabm2469. [Google Scholar] [CrossRef]
- Ziai, Y.; Petronella, F.; Rinoldi, C.; Nakielski, P.; Zakrzewska, A.; Kowalewski, T.A.; Augustyniak, W.; Li, X.; Calogero, A.; Sabała, I.; et al. Chameleon-inspired multifunctional plasmonic nanoplatforms for biosensing applications. NPG Asia Mater. 2022, 14, 18. [Google Scholar] [CrossRef]
- Hoffman, A.S. Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 2012, 64, 18–23. [Google Scholar] [CrossRef]
- Singh, V.K.; Pramanik, K.; Ray, S.S.; Pal, K. Development and characterization of sorbitan monostearate and sesame oil-based organogels for topical delivery of antimicrobials. AAPS PharmSciTech 2015, 16, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Pal, A.; Dey, J. Water-induced physical gelation of organic solvents by N-(n-alkylcarbamoyl)-l-alanine amphiphiles. Langmuir 2011, 27, 3401–3408. [Google Scholar] [CrossRef]
- Wollina, U.; Tirant, M.; Vojvodic, A.; Lotti, T. Treatment of psoriasis: Novel approaches to topical delivery. Open Access Maced. J. Med. Sci. 2019, 7, 3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, R.; Ayyanar, S.; Jayaraj, P.; Sivaramakrishna, A.; Rajagopalan, S.; Parthasarathy, S.; Desikan, R. Hydrogel formulation as efficient drug carrier and delivery for selected skin diseases. In Nano Hydrogels; Springer: New York, NY, USA, 2021; pp. 181–203. [Google Scholar]
- De Oliveira, E.L.; Ferreira, S.B.; de Castro-Hoshino, L.V.; Campanholi, K.d.S.; Calori, I.R.; de Morais, F.A.; Kimura, E.; da Silva Junior, R.C.; Bruschi, M.L.; Sato, F. Thermoresponsive hydrogel-loading aluminum chloride phthalocyanine as a drug release platform for topical administration in photodynamic therapy. Langmuir 2021, 37, 3202–3213. [Google Scholar] [CrossRef] [PubMed]
- Atanasova, D.; Staneva, D.; Grabchev, I. Textile materials modified with stimuli-responsive drug carrier for skin topical and transdermal delivery. Materials 2021, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, C.; Kumar, N.; Sagiri, S.S.; Pal, K.; Ray, S.S. Development of span 80–tween 80 based fluid-filled organogels as a matrix for drug delivery. J. Pharm. Bioallied Sci. 2012, 4, 155. [Google Scholar] [PubMed]
- Wright, A.J.; Marangoni, A.G. Vegetable Oil-Based Ricinelaidic Acid Organogels; Phase Behavior, Microstructure, and Rheology. In Edible Oleogels; Elsevier: Amsterdam, The Netherlands, 2018; pp. 65–83. [Google Scholar]
- Guarino, V.; Gentile, G.; Sorrentino, L.; Ambrosio, L. Polycaprolactone: Synthesis, properties, and applications. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: New Jersey, NJ, USA, 2002; pp. 1–36. [Google Scholar]
- Alemán-Domínguez, M.E.; Ortega, Z.; Benítez, A.; Vilariño-Feltrer, G.; Gómez-Tejedor, J.A.; Vallés-Lluch, A. Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading. J. Appl. Polym. Sci. 2018, 135, 46134. [Google Scholar] [CrossRef]
- Wang, W.; Wat, E.; Hui, P.C.; Chan, B.; Ng, F.S.; Kan, C.-W.; Wang, X.; Hu, H.; Wong, E.C.; Lau, C. Dual-functional transdermal drug delivery system with controllable drug loading based on thermosensitive poloxamer hydrogel for atopic dermatitis treatment. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- López-Saucedo, F.; Flores-Rojas, G.G.; Meléndez-Ortiz, H.I.; Morfín-Gutierrez, A.; Luna-Straffon, M.A.; Bucio, E. Stimuli-responsive nanomaterials for drug delivery. In Characterization and Biology of Nanomaterials for Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2019; pp. 375–424. [Google Scholar]
- Kaur, N.; Sharma, K.; Bedi, N. Topical nanostructured lipid carrier based hydrogel of mometasone furoate for the treatment of psoriasis. Pharm. Nanotechnol. 2018, 6, 133–143. [Google Scholar] [CrossRef]
- Chang, C.; Zhang, L. Cellulose-based hydrogels: Present status and application prospects. Carbohydr. Polym. 2011, 84, 40–53. [Google Scholar] [CrossRef]
- Ciolacu, D.E.; Nicu, R.; Ciolacu, F. Cellulose-based hydrogels as sustained drug-delivery systems. Materials 2020, 13, 5270. [Google Scholar] [CrossRef]
- Nita, L.E.; Chiriac, A.P.; Rusu, A.G.; Ghilan, A.; Dumitriu, R.P.; Bercea, M.; Tudorachi, N. Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly (2-Dimethylaminoethyl Methacrylate) for Anti-Inflammatory Drug Delivery. Macromol. Biosci. 2020, 20, 1900412. [Google Scholar] [CrossRef]
- Gasperini, L.; Mano, J.; Reis, R. Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 2014, 11, 20140817. [Google Scholar] [CrossRef] [Green Version]
- Nia, S.B.; Pooresmaeil, M.; Namazi, H. Carboxymethylcellulose/layered double hydroxides bio-nanocomposite hydrogel: A controlled amoxicillin nanocarrier for colonic bacterial infections treatment. Int. J. Biol. Macromol. 2020, 155, 1401–1409. [Google Scholar]
- Gradzielski, M.; Duvail, M.; de Molina, P.M.; Simon, M.; Talmon, Y.; Zemb, T. Using microemulsions: Formulation based on knowledge of their mesostructure. Chem. Rev. 2021, 121, 5671–5740. [Google Scholar] [CrossRef]
- Bender, E.A.; Adorne, M.D.; Colomé, L.M.; Abdalla, D.S.; Guterres, S.S.; Pohlmann, A.R. Hemocompatibility of poly (ε-caprolactone) lipid-core nanocapsules stabilized with polysorbate 80-lecithin and uncoated or coated with chitosan. Int. J. Pharm. 2012, 426, 271–279. [Google Scholar] [CrossRef]
- Da Silva, A.L.M.; Contri, R.V.; Jornada, D.S.; Pohlmann, A.R.; Guterres, S.S. Vitamin K1—Loaded lipid-core nanocapsules: Physicochemical characterization and in vitro skin permeation. Skin Res. Technol. 2013, 19, e223–e230. [Google Scholar] [CrossRef]
- Gungor, S.; Kahraman, E.; Ozsoy, Y. Polymeric micelles for cutaneous drug delivery. Nano-Based Drug Deliv. 2015, 9, 367–387. [Google Scholar]
- Dehkharghani, R.A.; Hosseinzadeh, M.; Nezafatdoost, F.; Jahangiri, J. Application of methodological analysis for hydrocortisone nanocapsulation in biodegradable polyester and MTT assay. Polym. Sci. Ser. A 2018, 60, 770–776. [Google Scholar] [CrossRef]
- Pantshwa, J.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Penny, C.; Pillay, V. Synthesis of novel amphiphilic poly (N-isopropylacrylamide)-b-poly (aspartic acid) nanomicelles for potential targeted chemotherapy in ovarian cancer. J. Drug Deliv. Sci. Technol. 2017, 39, 308–323. [Google Scholar] [CrossRef]
- Avasatthi, V.; Pawar, H.; Dora, C.P.; Bansod, P.; Gill, M.S.; Suresh, S. A novel nanogel formulation of methotrexate for topical treatment of psoriasis: Optimization, in vitro and in vivo evaluation. Pharm. Dev. Technol. 2016, 21, 554–562. [Google Scholar] [CrossRef]
- Khurana, S.; Jain, N.; Bedi, P. Nanoemulsion based gel for transdermal delivery of meloxicam: Physico-chemical, mechanistic investigation. Life Sci. 2013, 92, 383–392. [Google Scholar] [CrossRef]
- Andonova, V.Y.; Peneva, P.T.; Apostolova, E.G.; Dimcheva, T.D.; Peychev, Z.L.; Kassarova, M.I. Carbopol hydrogel/sorbitan monostearate-almond oil based organogel biphasic formulations: Preparation and characterization of the bigels. Trop. J. Pharm. Res. 2017, 16, 1455–1463. [Google Scholar] [CrossRef] [Green Version]
- Shinde, G.; Desai, P.; Shelke, S.; Patel, R.; Bangale, G.; Kulkarni, D. Mometasone furoate-loaded aspasomal gel for topical treatment of psoriasis: Formulation, optimization, in vitro and in vivo performance. J. Dermatol. Treat. 2022, 33, 885–896. [Google Scholar] [CrossRef]
- Surber, C.; Abels, C.; Maibach, H. pH of the Skin: Issues and Challenges. In Current Problems in Dermatology; WorldCat: Tarboro, NC, USA, 2018; Available online: https://www.worldcat.org/title/ph-of-the-skin-issues-and-challenges/oclc/1057372454?referer=di&ht=edition (accessed on 1 March 2021).
- Bjerrum, E.J. Machine learning optimization of cross docking accuracy. Comput. Biol. Chem. 2016, 62, 133–144. [Google Scholar] [CrossRef]
- Genheden, S.; Kuhn, O.; Mikulskis, P.; Hoffmann, D.; Ryde, U. The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. J. Chem. Inf. Model. 2012, 52, 2079–2088. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Yi, W.; Suino-Powell, K.; Zhou, X.E.; Tolbert, W.D.; Tang, X.; Yang, J.; Yang, H.; Shi, J.; Hou, L.; et al. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res. 2014, 24, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Rants’o, T.A.; Van der Westhuizen, C.J.; van Zyl, R.L. Optimization of covalent docking for organophosphates interaction with Anopheles acetylcholinesterase. J. Mol. Graph. Model. 2022, 110, 108054. [Google Scholar] [CrossRef]
- Lotesta, S.D.; Marcus, A.P.; Zheng, Y.; Leftheris, K.; Noto, P.B.; Meng, S.; McGeehan, G.M. Identification of spirooxindole and dibenzoxazepine motifs as potent mineralocorticoid receptor antagonists. Bioorg. Med. Chem. 2016, 24, 1384–1391. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, J.R.; Calkins, D.; Sullivan, A.P.; Shelley, J.C. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J. Comput. Aided Mol. Des. 2010, 24, 591–604. [Google Scholar] [CrossRef]
- Massova, I.; Kollman, P.A. Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 2000, 18, 113–135. [Google Scholar] [CrossRef]
- Colombo, I.; Sangiovanni, E.; Maggio, R.; Mattozzi, C.; Zava, S.; Corbett, Y.; Fumagalli, M.; Carlino, C.; Corsetto, P.A.; Scaccabarozzi, D. HaCaT cells as a reliable in vitro differentiation model to dissect the inflammatory/repair response of human keratinocytes. Mediat. Inflamm. 2017, 2017, 7435621. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, L.; Donato, M.T.; Gómez-Lechón, M.J. General cytotoxicity assessment by means of the MTT assay. In Protocols in In Vitro Hepatocyte Research; Springer: New York, NY, USA, 2015; pp. 333–348. [Google Scholar]
- Abbas, N.; Arshad, M.S.; Hussain, A.; Irfan, M.; Ahsan, M.; Rasool, M.F.; ur Rehman, M.H. Development and validation of a spectroscopic method for the simultaneous analysis of miconazole nitrate and hydrocortisone acetate in pharmaceutical dosage form. Trop. J. Pharm. Res. 2017, 16, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Liu, J.; Liu, H.; Evrendilek, F.; Buyukada, M. Pyrolysis of water hyacinth biomass parts: Bioenergy, gas emissions, and by-products using TG-FTIR and Py-GC/MS analyses. Energy Convers. Manag. 2020, 207, 112552. [Google Scholar] [CrossRef]
- Fatehi, P.; Baba, A.S.; Misran, M. Preparation and characterization of palm oil in water microemulsion for application in the food industry. Br. Food J. 2020, 122, 3077–3088. [Google Scholar] [CrossRef]
- Elzein, T.; Nasser-Eddine, M.; Delaite, C.; Bistac, S.; Dumas, P. FTIR study of polycaprolactone chain organization at interfaces. J. Colloid Interface Sci. 2004, 273, 381–387. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Ali, H.S.; York, P.; Blagden, N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors. Int. J. Pharm. 2009, 375, 107–113. [Google Scholar] [CrossRef]
- Awasthi, G.P.; Kaliannagounder, V.K.; Park, J.; Maharjan, B.; Shin, M.; Yu, C.; Park, C.H.; Kim, C.S. Assembly of porous graphitic carbon nitride nanosheets into electrospun polycaprolactone nanofibers for bone tissue engineering. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126584. [Google Scholar] [CrossRef]
- Witika, B.A.; Walker, R. Preformulation characterization and identification of excipients for nevirapine loaded niosomes. Pharm.—Int. J. Pharm. Sci. 2021, 76, 77–83. [Google Scholar]
- Voss, G.T.; Gularte, M.S.; de Oliveira, R.L.; Luchese, C.; Fajardo, A.R.; Wilhelm, E.A. Biopolymeric films as delivery vehicles for controlled release of hydrocortisone: Promising devices to treat chronic skin diseases. Mater. Sci. Eng. C 2020, 114, 111074. [Google Scholar] [CrossRef]
- Rosado, C.; Silva, C.; Reis, C.P. Hydrocortisone-loaded poly (ε-caprolactone) nanoparticles for atopic dermatitis treatment. Pharm. Dev. Technol. 2013, 18, 710–718. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-M.; Lim, S.; Kim, G.-Y.; Kim, D.-W.; Rhee, J.H.; Lee, K.-Y. Rosin nanoparticles as a drug delivery carrier for the controlled release of hydrocortisone. Biotechnol. Lett. 2005, 27, 1487–1490. [Google Scholar] [CrossRef]
- Dhar, S.; Seth, J.; Parikh, D. Systemic side-effects of topical corticosteroids. Indian J. Dermatol. 2014, 59, 460. [Google Scholar] [CrossRef]
- Liu, D.; Ahmet, A.; Ward, L.; Krishnamoorthy, P.; Mandelcorn, E.D.; Leigh, R.; Brown, J.P.; Cohen, A.; Kim, H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin. Immunol. 2013, 9, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Palmer, B.C.; DeLouise, L.A. Nanoparticle-enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 2016, 21, 1719. [Google Scholar] [CrossRef]
- Vora, D.; Garimella, H.T.; German, C.L.; Banga, A.K. Microneedle and iontophoresis mediated delivery of methotrexate into and across healthy and psoriatic skin. Int. J. Pharm. 2022, 618, 121693. [Google Scholar] [CrossRef]
- Bigliardi, P.L. Role of skin pH in psoriasis. pH Skin Issues Chall. 2018, 54, 108–114. [Google Scholar]
- Tarun, J.; Susan, J.; Suria, J.; Susan, V.J.; Criton, S. Evaluation of pH of bathing soaps and shampoos for skin and hair care. Indian J. Dermatol. 2014, 59, 442. [Google Scholar] [CrossRef]
- Katas, H.; Hussain, Z.; Ling, T.C. Chitosan nanoparticles as a percutaneous drug delivery system for hydrocortisone. J. Nanomater. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Pantsar, T.; Poso, A. Binding affinity via docking: Fact and fiction. Molecules 2018, 23, 1899. [Google Scholar] [CrossRef] [Green Version]
- Van Greunen, D.G.; Cordier, W.; Nell, M.; van der Westhuyzen, C.; Steenkamp, V.; Panayides, J.-L.; Riley, D.L. Targeting Alzheimer’s disease by investigating previously unexplored chemical space surrounding the cholinesterase inhibitor donepezil. Eur. J. Med. Chem. 2017, 127, 671–690. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef] [Green Version]
- Nastiti, C.M.; Ponto, T.; Abd, E.; Grice, J.E.; Benson, H.A.; Roberts, M.S. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des. Dev. Ther. 2020, 14, 3271. [Google Scholar] [CrossRef] [PubMed]
HCT-Loaded Nanoparticles | ||||
---|---|---|---|---|
Time (h) | Absorbance (nm) | Concentration (µg/mL) | Mass (mg) | % Release |
0 | 0.042 ± 0.004 | 0.837 | 0.046 | 0.230 |
0.25 | 0.065 ± 0.004 | 1.067 | 0.059 | 0.293 |
0.5 | 0.071 ± 0.004 | 1.123 | 0.062 | 0.309 |
1 | 0.085 ± 0.003 | 1.262 | 0.069 | 0.347 |
2 | 0.101 ± 0.003 | 1.420 | 0.078 | 0.390 |
4 | 0.186 ± 0.004 | 2.263 | 0.124 | 0.622 |
6 | 0.215 ± 0.007 | 2.546 | 0.140 | 0.700 |
24 | 0.250 ± 0.009 | 2.899 | 0.159 | 0.797 |
HCT-Loaded CMC Hydrogel | ||||
Time (h) | Absorbance (nm) | Concentration (µg/mL) | Mass (mg) | % Release |
0 | 0.013 ± 0.002 | 0.557 | 0.031 | 0.153 |
0.25 | 0.056 ± 0.002 | 0.975 | 0.054 | 0.268 |
0.5 | 0.062 ± 0.002 | 1.038 | 0.057 | 0.285 |
1 | 0.081 ± 0.001 | 1.222 | 0.067 | 0.336 |
2 | 0.093 ± 0.004 | 1.347 | 0.074 | 0.370 |
4 | 0.172 ± 0.003 | 2.128 | 0.117 | 0.585 |
6 | 0.190 ± 0.002 | 2.299 | 0.126 | 0.632 |
24 | 0.242 ± 0.002 | 2.813 | 0.155 | 0.774 |
HCT-Loaded Nanoparticles | ||||
---|---|---|---|---|
Time (h) | Absorbance (nm) | Concentration (µg/mL) | Mass (mg) | % Release |
0 | 0.053 ± 0.002 | 0.945 | 0.052 | 0.260 |
0.25 | 0.079 ± 0.007 | 1.202 | 0.066 | 0.331 |
0.5 | 0.102 ± 0.004 | 1.433 | 0.079 | 0.394 |
1 | 0.132 ± 0.002 | 1.729 | 0.095 | 0.476 |
2 | 0.185 ± 0.005 | 1.256 | 0.124 | 0.620 |
4 | 0.203 ± 0.003 | 2.428 | 0.134 | 0.668 |
6 | 0.229 ± 0.005 | 2.691 | 0.148 | 0.740 |
24 | 0.286 ± 0.005 | 3.248 | 0.179 | 0.839 |
HCT-Loaded CMC Hydrogel | ||||
Time (h) | Absorbance (nm) | Concentration (µg/mL) | Mass (mg) | % Release |
0 | 0.053 ± 0.002 | 0.945 | 0.047 | 0.236 |
0.25 | 0.079 ± 0.007 | 1.202 | 0.063 | 0.313 |
0.5 | 0.102 ± 0.004 | 1.433 | 0.071 | 0.356 |
1 | 0.132 ± 0.002 | 1.729 | 0.093 | 0.465 |
2 | 0.185 ± 0.005 | 1.256 | 0.099 | 0.494 |
4 | 0.203 ± 0.003 | 2.428 | 0.127 | 0.633 |
6 | 0.229 ± 0.005 | 2.691 | 0.141 | 0.707 |
24 | 0.286 ± 0.005 | 3.248 | 0.164 | 0.819 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondiah, P.P.D.; Rants’o, T.A.; Mdanda, S.; Mohlomi, L.M.; Choonara, Y.E. A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris. Polymers 2022, 14, 2633. https://doi.org/10.3390/polym14132633
Kondiah PPD, Rants’o TA, Mdanda S, Mohlomi LM, Choonara YE. A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris. Polymers. 2022; 14(13):2633. https://doi.org/10.3390/polym14132633
Chicago/Turabian StyleKondiah, Pierre P. D., Thankhoe A. Rants’o, Sipho Mdanda, Lauwrence M. Mohlomi, and Yahya E. Choonara. 2022. "A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris" Polymers 14, no. 13: 2633. https://doi.org/10.3390/polym14132633
APA StyleKondiah, P. P. D., Rants’o, T. A., Mdanda, S., Mohlomi, L. M., & Choonara, Y. E. (2022). A Poly (Caprolactone)-Cellulose Nanocomposite Hydrogel for Transdermal Delivery of Hydrocortisone in Treating Psoriasis Vulgaris. Polymers, 14(13), 2633. https://doi.org/10.3390/polym14132633