Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites
Abstract
:1. Introduction
2. Micromechanical Models
2.1. The Bowyer–Bader Discrete Solutions
2.2. Integral (In-Built) Model
3. Materials and Methods
3.1. Guadua, Polymer and Coupling Agent
3.2. Extrusion of the Composite
3.3. Injection Molding
3.4. Mechanical Characterization
3.5. Microtomography X (μ-CT)
3.6. Interfacial Shear Strength
4. Results and Discussion
4.1. Tensile Tests of Composite
4.2. Microstructural Characterization by Using X (μ-CT)
4.3. Interfacial Shear Strength
4.3.1. Interface Shear Stress (IFSS)
4.3.2. Orientation Factor Efficiency ()
4.3.3. Critical Length to Breakage Deformation ()
4.3.4. Contribution of the Matrix and Fibers to the Tensile Strength of the Composite Materials
4.3.5. Variation of Fiber Length and Orientation Efficiencies with Deformation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimzadeh, A.; R Koloor, S.S.; Ayatollahi, M.R.; Bushroa, A.R.; Yahya, M.Y. Assessment of Nano-Indentation Method in Mechanical Characterization of Heterogeneous Nanocomposite Materials Using Experimental and Computational Approaches. Sci. Rep. 2019, 9, 15763. [Google Scholar] [CrossRef] [Green Version]
- Noël, M. Probabilistic Fatigue Life Modelling of FRP Composites for Construction. Constr. Build. Mater. 2019, 206, 279–286. [Google Scholar] [CrossRef]
- Koloor, S.S.R.; Tamin, M. Mode-II Interlaminar Fracture and Crack-Jump Phenomenon in CFRP Composite Laminate Materials. Compos. Struct. 2018, 204, 594–606. [Google Scholar] [CrossRef]
- Sellitto, A.; Saputo, S.; Di Caprio, F.; Riccio, A.; Russo, A.; Acanfora, V. Numerical–Experimental Correlation of Impact-Induced Damages in CFRP Laminates. Appl. Sci. 2019, 9, 2372. [Google Scholar] [CrossRef] [Green Version]
- Serra-Parareda, F.; Vilaseca, F.; Aguado, R.; Espinach, F.X.; Tarrés, Q.; Delgado-Aguilar, M. Effective Young’s Modulus Estimation of Natural Fibers through Micromechanical Models: The Case of Henequen Fibers Reinforced-PP Composites. Polymers 2021, 13, 3947. [Google Scholar] [CrossRef]
- Tsai, S.W.; Wu, E.M. A General Theory of Strength for Anisotropic Materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Rahimian Koloor, S.S.; Karimzadeh, A.; Yidris, N.; Petrů, M.; Ayatollahi, M.R.; Tamin, M.N. An Energy-Based Concept for Yielding of Multidirectional FRP Composite Structures Using a Mesoscale Lamina Damage Model. Polymers 2020, 12, 157. [Google Scholar] [CrossRef] [Green Version]
- Hashin, Z. Failure Criteria for Unidirectional Fiber Composites. J. Appl. Mech. 1980, 47, 329–334. [Google Scholar] [CrossRef]
- Chang, F.-K.; Lessard, L.B. Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings: Part I—Analysis. J. Compos. Mater. 1991, 25, 2–43. [Google Scholar] [CrossRef]
- Puck, A.; Schürmann, H. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. In Failure Criteria in Fibre-Reinforced-Polymer Composites; Elsevier: Amsterdam, The Netherlands, 2004; pp. 832–876. [Google Scholar]
- Cuntze, R.G.; Freund, A. The Predictive Capability of Failure Mode Concept-Based Strength Criteria for Multidirectional Laminates. Compos. Sci. Technol. 2004, 64, 343–377. [Google Scholar] [CrossRef]
- Azizi, R.; Legarth, B.N.; Niordson, C.F. A New Macroscopically Anisotropic Pressure Dependent Yield Function for Metal Matrix Composite Based on Strain Gradient Plasticity for the Microstructure. J. Mech. Phys. Solids 2013, 61, 991–1009. [Google Scholar] [CrossRef]
- Daniel, I.M. Yield and Failure Criteria for Composite Materials under Static and Dynamic Loading. Prog. Aerosp. Sci. 2016, 81, 18–25. [Google Scholar] [CrossRef] [Green Version]
- R Koloor, S.S.; Khosravani, M.R.; Hamzah, R.I.R.; Tamin, M.N. FE Model-Based Construction and Progressive Damage Processes of FRP Composite Laminates with Different Manufacturing Processes. Int. J. Mech. Sci. 2018, 141, 223–235. [Google Scholar] [CrossRef]
- Koloor, R. Simulation Methodology for Fracture Processes of Composite Laminates Using Damage-Based Models. In Department of Design and Applied Mechanics, Faculty of Mechanical Engineering; Universiti Teknologi Malaysia: Johor, Malaysia, 2016. [Google Scholar]
- Koloor, S.; Ayatollahi, M.; Tamin, M. Elastic-Damage Deformation Response of Fiber-Reinforced Polymer Composite Laminates with Lamina Interfaces. J. Reinf. Plast. Compos. 2017, 36, 832–849. [Google Scholar] [CrossRef]
- Pickering, K. Properties and Performance of Natural-Fibre Composites; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Serrano, A.; Espinach, F.X.; Julian, F.; del Rey, R.; Mendez, J.A.; Mutje, P. Estimation of the Interfacial Shears Strength, Orientation Factor and Mean Equivalent Intrinsic Tensile Strength in Old Newspaper Fiber/Polypropylene Composites. Compos. Part B Eng. 2013, 50, 232–238. [Google Scholar] [CrossRef]
- Mera-Moya, V.; Fajardo, J.I.; de Paula Junior, I.C.; Bustamante, L.; Cruz, L.J.; Barros, T. Semi-Automatic Determination of Geometrical Properties of Short Natural Fibers in Biocomposites by Digital Image Processing. In Proceedings of the International Conference on Information Technology & Systems (ICITS 2018), Libertad City, Ecuador, 10–12 January 2018; Springer: Cham, Switzerlands, 2018; pp. 387–396. [Google Scholar]
- Kelly, A.; Tyson, A.W. Tensile Properties of Fibre-Reinforced Metals: Copper/Tungsten and Copper/Molybdenum. J. Mech. Phys. Solids 1965, 13, 329–350. [Google Scholar] [CrossRef]
- Bowyer, W.H.; Bader, M.G. On the Re-Inforcement of Thermoplastics by Imperfectly Aligned Discontinuous Fibres. J. Mater. Sci. 1972, 7, 1315–1321. [Google Scholar] [CrossRef]
- Espinach, F.X.; Julián, F.; Alcalà, M.; Tresserras, J.; Mutjé, P. High Stiffness Performance Alpha-Grass Pulp Fiber Reinforced Thermoplastic Starch-Based Fully Biodegradable Composites. BioResources 2014, 9, 738–755. [Google Scholar] [CrossRef] [Green Version]
- Serrano, A.; Espinach, F.X.; Tresserras, J.; del Rey, R.; Pellicer, N.; Mutje, P. Macro and Micromechanics Analysis of Short Fiber Composites Stiffness: The Case of Old Newspaper Fibers–Polypropylene Composites. Mater. Des. 2014, 55, 319–324. [Google Scholar] [CrossRef] [Green Version]
- Serrano, A.; Espinach, F.X.; Tresserras, J.; Pellicer, N.; Alcala, M.; Mutje, P. Study on the Technical Feasibility of Replacing Glass Fibers by Old Newspaper Recycled Fibers as Polypropylene Reinforcement. J. Clean. Prod. 2014, 65, 489–496. [Google Scholar] [CrossRef]
- Reixach, R.; Espinach, F.X.; Arbat, G.; Julián, F.; Delgado-Aguilar, M.; Puig, J.; Mutjé, P. Tensile Properties of Polypropylene Composites Reinforced with Mechanical, Thermomechanical, and Chemi-Thermomechanical Pulps from Orange Pruning. BioResources 2015, 10, 4544–4556. [Google Scholar] [CrossRef] [Green Version]
- Granda, L.A.; Espinach, F.X.; Méndez, J.A.; Tresserras, J.; Delgado-Aguilar, M.; Mutjé, P. Semichemical Fibres of Leucaena Collinsii Reinforced Polypropylene Composites: Young’s Modulus Analysis and Fibre Diameter Effect on the Stiffness. Compos. Part B Eng. 2016, 92, 332–337. [Google Scholar] [CrossRef]
- Notta-Cuvier, D.; Lauro, F.; Bennani, B. An Original Approach for Mechanical Modelling of Short-Fibre Reinforced Composites with Complex Distributions of Fibre Orientation. Compos. Part A Appl. Sci. Manuf. 2014, 62, 60–66. [Google Scholar] [CrossRef]
- Andersons, J.; Modniks, J.; Joffe, R.; Madsen, B.; Nättinen, K. Apparent Interfacial Shear Strength of Short-Flax-Fiber/Starch Acetate Composites. Int. J. Adhes. Adhes. 2016, 64, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Shen, S.Z.; Hua, L.; Li, X.; Wan, X.; Miao, M. Predicting Tensile Behaviors of Short Flax Fiber-Reinforced Polymer–Matrix Composites Using a Modified Shear-Lag Model. J. Compos. Mater. 2018, 52, 3701–3713. [Google Scholar] [CrossRef]
- Pantano, A.; Militello, C.; Bongiorno, F.; Zuccarello, B. Analysis of the Parameters Affecting the Stiffness of Short Sisal Fiber Biocomposites Manufactured by Compression-Molding. Polymers 2021, 14, 154. [Google Scholar] [CrossRef]
- Notta-Cuvier, D.; Lauro, F.; Bennani, B. Modelling of Progressive Fibre/Matrix Debonding in Short-Fibre Reinforced Composites up to Failure. Int. J. Solids Struct. 2015, 66, 140–150. [Google Scholar] [CrossRef]
- Abhilash, R.M.; Venkatesh, G.S.; Chauhan, S.S. Micromechanical Modeling of Bamboo Short Fiber Reinforced Polypropylene Composites. Multiscale Multidiscip. Model. Exp. Des. 2021, 4, 25–40. [Google Scholar] [CrossRef]
- Phua, Y.J.; Pegoretti, A.; Mohd Ishak, Z.A. Experimental Analysis and Theoretical Modeling of the Mechanical Behavior of Starch-Grafted-Polypropylene/Kenaf Fibers Composites. Polym. Compos. 2017. [Google Scholar] [CrossRef]
- Andre, N.; Ariawan, D.; Mohd Ishak, Z. Elastic Anisotropy of Kenaf Fibre and Micromechanical Modeling of Nonwoven Kenaf Fibre/Epoxy Composites. J. Reinf. Plast. Compos. 2016, 35, 1424–1433. [Google Scholar] [CrossRef]
- Xu, X. Cellulose Fiber Reinforced Nylon 6 or Nylon 66 Composites, ProQuest; Georgia Institute of Technology: Atlanta, GA, USA, 2008. [Google Scholar]
- Isitman, N.A.; Aykol, M. Continuum Micro-Mechanics of Estimating Interfacial Shear Strength in Short Fiber Composites. Compos. Interfaces 2010, 17, 49–58. [Google Scholar] [CrossRef]
- Isitman, N.A.; Aykol, M.; Ozkoc, G.; Bayram, G.; Kaynak, C. Interfacial Strength in Short Glass Fiber Reinforced Acrylonitrile-Butadiene-Styrene/Polyamide 6 Blends. Polym. Compos. 2010, 31, 392–398. [Google Scholar] [CrossRef]
- Nciri, M.; Notta-Cuvier, D.; Lauro, F.; Chaari, F.; Maalej, Y.; Zouari, B. Viscoelastic–Viscoplastic Model for Short-Fiber-Reinforced Composites with Complex Fiber Orientation. Mech. Adv. Mater. Struct. 2019, 26, 842–853. [Google Scholar] [CrossRef]
- Nciri, M.; Notta-Cuvier, D.; Lauro, F.; Chaari, F.; Maalej, Y.; Zouari, B. Modelling and Characterisation of Dynamic Behaviour of Short-Fibre-Reinforced Composites. Compos. Struct. 2017, 160, 516–528. [Google Scholar] [CrossRef]
- Ghiassi, B.; Xavier, J.; Oliveira, D.V.; Lourenço, P.B. Application of Digital Image Correlation in Investigating the Bond between FRP and Masonry. Compos. Struct. 2013, 106, 340–349. [Google Scholar] [CrossRef] [Green Version]
- Depuydt, D.; Hendrickx, K.; Biesmans, W.; Ivens, J.; Van Vuure, A.W. Digital Image Correlation as a Strain Measurement Technique for Fibre Tensile Tests. Compos. Part A Appl. Sci. Manuf. 2017, 99, 76–83. [Google Scholar] [CrossRef]
- Khalfallah, M.; Abbès, B.; Abbès, F.; Guo, Y.Q.; Marcel, V.; Duval, A.; Vanfleteren, F.; Rousseau, F. Innovative Flax Tapes Reinforced Acrodur Biocomposites: A New Alternative for Automotive Applications. Mater. Des. 2014, 64, 116–126. [Google Scholar] [CrossRef]
- Miettinen, A.; Ojala, A.; Wikström, L.; Joffe, R.; Madsen, B.; Nättinen, K.; Kataja, M. Non-Destructive Automatic Determination of Aspect Ratio and Cross-Sectional Properties of Fibres. Compos. Part A Appl. Sci. Manuf. 2015, 77, 188–194. [Google Scholar] [CrossRef]
- Paltán, C.; Costa, J.; Fajardo, J. Computed Tomography of Polymer Composites Reinforced with Natural Short Fiber. In Proceedings of the International Conference on Computational Science and Its Applications, Petersburg, Russia, 1–4 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 452–467. [Google Scholar]
- Newman, R.H.; Hebert, P.; Dickson, A.R.; Even, D.; Fernyhough, A.; Sandquist, D. Micromechanical Modelling for Wood–Fibre Reinforced Plastics in Which the Fibres Are Neither Stiff nor Rod-Like. Compos. Part A Appl. Sci. Manuf. 2014, 65, 57–63. [Google Scholar] [CrossRef]
- Miettinen, A. Characterization of Three-Dimensional Microstructure of Composite Materials by X-ray Tomography; Research Report; Department of Physics, University of Jyväskylä: Jyväskylän yliopisto, Finland, 2016. [Google Scholar]
- Ren, D.; Yu, Z.; Zhang, X.; Wang, H.; Wang, H.; Yu, Y. Quantitative Characterization of the Interface between Bamboo Fiber and Polypropylene with Pull-out Test and Nanomechanical Imaging. J. Mater. Sci. 2017, 52, 1296–1307. [Google Scholar] [CrossRef]
- Isitman, N.A.; Aykol, M.; Kaynak, C. Interactions at Fiber/Matrix Interface in Short Fiber Reinforced Amorphous Thermoplastic Composites Modified with Micro- and Nano-Fillers. J. Mater. Sci. 2012, 47, 702–710. [Google Scholar] [CrossRef]
- Bayer Resplandis, J. Valoración de Materiales Compuestos de HDPE Reforzados Con Fibras de Agave Sisalana. Aproximación a Un Paradigma de Geometría Fractal Para Las Fibras. Ph.D. Thesis, Universitat de Girona, Girona, España, 2013. [Google Scholar]
- Nciri, M. Constitutive Behaviour Modelling of Short Fibre Reinforced Composites under Dynamic Loading. Ph.D. Thesis, Université de Valenciennes et du Hainaut-Cambresis, Valenciennes, France, 2017. [Google Scholar]
- Velez-Garcia, G.M. Experimental Evaluation and Simulations of Fiber Orientation in Injection Molding of Polymers Containing Short Glass Fibers. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2012. [Google Scholar]
- Fu, S.-Y.; Lauke, B.; Mai, Y.-W. Science and Engineering of Short Fibre-Reinforced Polymer Composites; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Modniks, J.; Poriķe, E.; Andersons, J.; Joffe, R. Evaluation of the Apparent Interfacial Shear Strength in Short-Flax-Fiber/PP Composites. Mech. Compos. Mater. 2012, 48, 571–578. [Google Scholar] [CrossRef]
- Beckermann, G.W.; Pickering, K.L. Engineering and Evaluation of Hemp Fibre Reinforced Polypropylene Composites: Micro-Mechanics and Strength Prediction Modelling. Compos. Part A Appl. Sci. Manuf. 2009, 40, 210–217. [Google Scholar] [CrossRef]
- Vallejos, M.E.; Espinach, F.X.; Julian, F.; Torres, L.; Vilaseca, F.; Mutje, P. Micromechanics of Hemp Strands in Polypropylene Composites. Compos. Sci. Technol. 2012, 72, 1209–1213. [Google Scholar] [CrossRef]
- López, J.P.; Méndez, J.A.; Mansouri, N.-E.E.; Mutjé, P.; Vilaseca, F. Mean Intrinsic Tensile Properties of Stone Groundwood Fibers from Softwood. BioResources 2011, 6, 5037–5049. [Google Scholar] [CrossRef]
- Joffre, T.; Miettinen, A.; Berthold, F.; Gamstedt, E.K. X-Ray Micro-Computed Tomography Investigation of Fibre Length Degradation during the Processing Steps of Short-Fibre Composites. Compos. Sci. Technol. 2014, 105, 127–133. [Google Scholar] [CrossRef]
- Joffre, T.; Miettinen, A.; Wernersson, E.L.G.; Isaksson, P.; Gamstedt, E.K. Effects of Defects on the Tensile Strength of Short-Fibre Composite Materials. Mech. Mater. 2014, 75, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Modniks, J.; Andersons, J. Modeling Elastic Properties of Short Flax Fiber-Reinforced Composites by Orientation Averaging. Comput. Mater. Sci. 2010, 50, 595–599. [Google Scholar] [CrossRef]
- Li, Y.; Pickering, K.L.; Farrell, R.L. Determination of Interfacial Shear Strength of White Rot Fungi Treated Hemp Fibre Reinforced Polypropylene. Compos. Sci. Technol. 2009, 69, 1165–1171. [Google Scholar] [CrossRef]
Composite Code | Tensile Strength (MPa) | Tensile Yield Stress b (MPa) | Young’s Modulus (GPa) | Yield Strain (%) | Breaking Strain (%) |
---|---|---|---|---|---|
PP+30GAKs+4M | 35.79 (1.4) | 27.6 (0.2) | 3.44 (0.1) | 1(0.1) | 3 (0.1) |
PP+30GAKs+8M | 36.40 (1.2) | 28.8 (0.2) | 3.49 (0.1) | 1 (0.1) | 3 (0.1) |
PP+40GAKs+4M | 39.27 (1.1) | 34.3 (0.3) | 4.11 (0.1) | 1 (0.1) | 2 (0.1) |
PP+40GAKs+8M | 39.10 (0.3) | 34.5 (0.3) | 4.20 (0.2) | 1 (0.1) | 2 (0.1) |
PP | 25.82 (0.6) a | 16.54 (0.3) | 1.21 (0.2) | 9 (0.3) | -- |
Parameter | Unit | PP+30GAKs | PP+40GAKs |
---|---|---|---|
Scale (K) | 0.001659 | 0.0009827 | |
Shape (n) | 1.326 | 1.571 | |
) | (MPa) | 21,130 | 21,130 |
(MPa) | 1210 | 1210 | |
(%) | 3.00 | 2.00 | |
m) | 28.57 | 21.01 | |
0.27 | 0.36 |
Composition | |||
---|---|---|---|
PP+30GAKs | 12 | 0.282 | 0.78 |
PP+40GAKs | 12 | 0.323 | 1.42 |
Author | Matrix | Reinforcement (wt%) | |||
---|---|---|---|---|---|
Modniks [59] | PP | Flax 20 | 4–8 | N/D | N/D |
Notta Cuvier [27] | PP | Flax 30 | 3.78 | N/D | N/D |
Serrano [18] | PP+MAPP | ONPs 20 | 14.5 | 0.37 | N/D |
ONPs 50 | 13.91 | 0.32 | |||
Serrano [23] | PP | ONPs 20 | N/D | 0.49 | N/D |
ONPs 50 | 0.57 | ||||
López [56] | PP | SGW 30 | 3.85 | 0.37 | 1277 |
SGW 50 | 3.45 | 0.36 | 1342 | ||
PP+MAPP | SGW 30 | 15.71 | 0.29 | 649 | |
SGW 50 | 15.87 | 0.28 | 566 | ||
Vallejos [55] | PP+MAPP | Hemp 20 | 14.95 | 0.28 | N/D |
Hemp 50 | 15.6 | 0.28 | |||
Li [60] | PP | Hemp 40 | 6.69 | 0.44 | N/D |
Fajardo a | PP+MAPP | GAKs 30 | 12 | 0.282 | 536 |
GAKs 40 | 12 | 0.323 | 394 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajardo, J.I.; Costa, J.; Cruz, L.J.; Paltán, C.A.; Santos, J.D. Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites. Polymers 2022, 14, 2627. https://doi.org/10.3390/polym14132627
Fajardo JI, Costa J, Cruz LJ, Paltán CA, Santos JD. Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites. Polymers. 2022; 14(13):2627. https://doi.org/10.3390/polym14132627
Chicago/Turabian StyleFajardo, Jorge I., Josep Costa, Luis J. Cruz, César A. Paltán, and Jonnathan D. Santos. 2022. "Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites" Polymers 14, no. 13: 2627. https://doi.org/10.3390/polym14132627
APA StyleFajardo, J. I., Costa, J., Cruz, L. J., Paltán, C. A., & Santos, J. D. (2022). Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites. Polymers, 14(13), 2627. https://doi.org/10.3390/polym14132627