One-Step Electrical Insulating Oil Regeneration on Electret PVDF/BaTiO3 Composite Nanofibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Nanofiber Preparation
2.3. Characterizations
3. Results and Discussion
3.1. Morphology of Nanofibers
3.2. Charge Stability of PVDF/BaTiO3 Nanofibers
3.3. Hydrophobicity of PVDF/BaTiO3 Nanofiber Membrane
4. Evaluation of Insulating Oil Regeneration Performance
4.1. Regeneration of Insulating Oil
- A.
- Performance on Formic Acid Filtration
- B.
- Acid Value after Filtration
- C.
- Moisture content within insulating oil
- D.
- Dielectric loss factor after filtration
- E.
- Breakdown Voltage after filtration
4.2. Mechanism of High-Efficiency Regeneration of Insulating Oil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Yu, Y.; Ma, T. System optimization of long-distance energy transportation in china using ultra-high-voltage power transmission. J. Renew. Sustain. Energy 2018, 10, 45503. [Google Scholar] [CrossRef]
- Pu, Z.; Ruan, J.; Zhang, Y.; Du, Z.; Xie, Q. Wave Process in Scale-Down Model of UHVDC Converter Transformer Under the Lightning Impulse Voltage. IEEE Trans. Magn. 2015, 51, 8401704. [Google Scholar] [CrossRef]
- Forrest, J.A.C.; Allard, B. Thermal problems caused by harmonic frequency leakage fluxes in three-phase, three-winding converter transformers. IEEE Trans. Power Deliver. 2004, 19, 208–213. [Google Scholar] [CrossRef]
- Ksenija, R.Đ.; Vojinović-Miloradov, M.; Sokolović, S.M. Life cycle of transformer oil. Hem. Ind. 2008, 62, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, F.; Fernandez, I.; Ortiz, A.; Renedo, C.J.; Delgado, F.; Fernandez, C. Health indexes for power transformers: A case study. IEEE Electr. Insul. Mag. 2016, 32, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Fofana, I. 50 years in the development of insulating liquids. IEEE Electr. Insul. Mag. 2013, 29, 13–25. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, F.; Wang, Z.; Li, J. A critical review of plant-based insulating fluids for transformer: 30-year development. Renew. Sustain. Energy Rev. 2021, 141, 110783. [Google Scholar] [CrossRef]
- Fofana, I.; Hadjadj, Y. Electrical-based Diagnostic Techniques for Assessing Insulation condition in Aged Transformers. Energies 2016, 9, 679. [Google Scholar] [CrossRef]
- Zhou, Y.; Sha, Y.; Chen, W.; Lu, L.; Deng, J. Conduction characteristics in transformer oil and electrical insulation paper. Power Syst. Technol. 2013, 37, 2527–2533. [Google Scholar]
- Yang, D.; Chen, W.; Wan, F.; Zhou, Y.; Wang, J. Identification of the Aging Stage of Transformer Oil-Paper Insulation via Raman Spectroscopic Characteristics. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1770–1777. [Google Scholar] [CrossRef]
- CIGRE Task Force D1.01.10. Ageing of Cellulose in Mineral-Oil Insulated Transformers; CIGRE: Paris, France, 2007; p. 88. [Google Scholar]
- Hao, J.; Fu, J.; Lin, G.; Wang, Q.; Yao, Q. Influence of oil property on the space charge characteristics and electric field distortion in oil-paper insulation. In Proceedings of the IEEE Workshop on Electronics, Computer and Applications, Ottawa, SO, Canada, 8–9 May 2014. [Google Scholar] [CrossRef]
- Matharage, S.Y.; Liu, S.; Liu, Q.; Wang, Z.D. Investigation on the Acid Removal Performance of Oil Regeneration Sorbent Materials. In Proceedings of the International Symposium on High Voltage Engineering, Budapest, Hungary, 26 August 2019. [Google Scholar] [CrossRef]
- Safiddine, L.; Zafour, H.-Z.; Rao, U.M.; Fofana, I. Regeneration of Transformer Insulating Fluids Using Membrane Separation Technology. Energies 2019, 12, 368. [Google Scholar] [CrossRef] [Green Version]
- Oumert, L.S.; Boucherit, A.; Zafour, A.H.Z.; Fofana, I. Comparative study of the degradation rate of new and regenerated mineral oils following electrical stress. IET Gener. Transm. Distrib. 2018, 12, 5891–5897. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Yin, X.; Yu, J.; Ding, B. Electret Polyvinylidene Fluoride Nanofibers Hybridized by Polytetrafluoroethylene Nanoparticles for High-Efficiency Air Filtration. ACS Appl. Mater. Interfaces 2016, 8, 23985–23994. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Yu, J.; Tang, X.; Ge, J.; Ding, B. Ultralight nanofiber-assembled cellular aerogels with superelasticity and multifunctionality. Nat. Commun. 2014, 5, 5802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, R.; Li, S.; Zhang, L.; Lei, Y. Fabrication and performance of a stable micro/nano composite electret filter for effective PM2.5 capture. Sci. Total Environ. 2020, 725, 138297. [Google Scholar] [CrossRef] [PubMed]
- Rao, U.M.; Sood, Y.R.; Jarial, R.K. Physiometric and Fourier transform infrared spectroscopy analysis of cellulose insulation in blend of mineral and synthetic ester oils for transformers. IET Sci. Meas. Technol. 2017, 11, 297–304. [Google Scholar] [CrossRef]
- Che, L.; Wu, J.; Yin, Y.; Zhou, G.; Wang, Q. Effect of Moisture on Space Charge behavior in oil-paper insulation under dc electric field. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 1570–1577. [Google Scholar] [CrossRef]
BaTiO3 Concentration within PVDF (wt%) | Minimum Pore Size (μm) | Maximum Pore Size (μm) | Average Pore Size (μm) | Average Fiber Diameter (nm) | C.V. Efficient |
---|---|---|---|---|---|
0 | 0.49 | 0.84 | 0.57 | 98 | 0.25 |
2.5 | 0.86 | 1.37 | 1.04 | 200 | 0.20 |
5 | 0.88 | 1.40 | 1.01 | 189 | 0.28 |
7.5 | 0.79 | 1.31 | 0.94 | 167 | 0.27 |
10 | 0.71 | 1.14 | 0.81 | 174 | 0.26 |
12.5 | 0.89 | 1.68 | 1.11 | 155 | 0.33 |
15 | 0.94 | 1.71 | 1.18 | 141 | 0.36 |
Sample Oil | Oil Info |
---|---|
A | pure insulating oil |
B | insulating oil before filtration |
C | pure PVDF membrane |
D | PVDF and 2.5 wt% BaTiO3 composite membrane |
E | PVDF and 5.0 wt% BaTiO3 composite membrane |
F | PVDF and 7.5 wt% BaTiO3 composite membrane |
G | PVDF and 10 wt% BaTiO3 composite membrane |
H | PVDF and 12.5 wt% BaTiO3 composite membrane |
I | PVDF and 15 wt% BaTiO3 composite membrane |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Tan, Y.; Wang, F.; Yang, L.; Cheng, N. One-Step Electrical Insulating Oil Regeneration on Electret PVDF/BaTiO3 Composite Nanofibers. Polymers 2022, 14, 2631. https://doi.org/10.3390/polym14132631
Zhao B, Tan Y, Wang F, Yang L, Cheng N. One-Step Electrical Insulating Oil Regeneration on Electret PVDF/BaTiO3 Composite Nanofibers. Polymers. 2022; 14(13):2631. https://doi.org/10.3390/polym14132631
Chicago/Turabian StyleZhao, Boyan, Yaxiong Tan, Feipeng Wang, Li Yang, and Nuo Cheng. 2022. "One-Step Electrical Insulating Oil Regeneration on Electret PVDF/BaTiO3 Composite Nanofibers" Polymers 14, no. 13: 2631. https://doi.org/10.3390/polym14132631
APA StyleZhao, B., Tan, Y., Wang, F., Yang, L., & Cheng, N. (2022). One-Step Electrical Insulating Oil Regeneration on Electret PVDF/BaTiO3 Composite Nanofibers. Polymers, 14(13), 2631. https://doi.org/10.3390/polym14132631