Fabrication of a Double Core–Shell Particle-Based Magnetic Nanocomposite for Effective Adsorption-Controlled Release of Drugs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Poly(2-acrylamido-2-methylpropane sulfonic acid) (poly(AMPS))
2.2.2. Preparation of Core–Shell Latex of Poly(AMPS)@BMA (PA@B)
2.2.3. Synthesis of Silica-Coated IONPs (IONPs@SiO2)
2.2.4. Fabrication of Magnetic Composite Material (MCM-PA@B)
2.2.5. Characterization of the Synthesized MCM-PA@B
2.2.6. Application of MCM-PA@B for Drug Loading and Release Studies
2.2.7. Kinetic Study of Adsorption
Pseudo-1st-Order Kinetic Model
Pseudo-2nd-Order Kinetic Model
Intra-Particle Diffusion Kinetic Model
2.2.8. Equilibrium Studies
3. Results
3.1. Scanning Electron Microscope Study of MCM-PA@B
3.2. FTIR Study of the Composite
3.3. Thermogravimetric Analysis
3.4. XRD Analysis
3.5. Zero-Point Charge (pHzpc) on the Composite
3.6. EDX Analysis
3.7. Drug Loading and Release Study
3.8. Adsorption Kinetics Models
3.9. Application of Equilibrium Isotherms on the Loading of Drugs
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shah, S.A.; Majeed, A.; Rashid, K.; Awan, S.U. PEG-coated folic acid-modified superparamagnetic MnFe2O4 nanoparticles for hyperthermia therapy and drug delivery. Mater. Chem. Phys. 2013, 138, 703–708. [Google Scholar] [CrossRef]
- Shah, S.A.; Hashmi, M.; Alam, S. Effect of aligning magnetic field on the magnetic and calorimetric properties of ferrimagnetic bioactive glass ceramics for the hyperthermia treatment of cancer. Mater. Sci. Eng. C 2011, 31, 1010–1016. [Google Scholar] [CrossRef]
- Tartaj, P.; del Puerto Morales, M.; Veintemillas-Verdaguer, S.; González-Carreño, T.; Serna, C.J. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R182–R197. [Google Scholar] [CrossRef]
- Issa, B.; Qadri, S.; Obaidat, I.M.; Bowtell, R.W.; Haik, Y. PEG coating reduces NMR relaxivity of Mn0.5Zn0.5Gd0.02Fe1.98O4 hyperthermia nanoparticles. J. Magn. Reson. Imaging 2011, 34, 1192–1198. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021. [Google Scholar] [CrossRef] [PubMed]
- Hui, C.; Shen, C.; Tian, J.; Bao, L.; Ding, H.; Li, C.; Tian, Y.; Shi, X.; Gao, H. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 2011, 3, 701–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoeva, S.I.; Huo, F.; Lee, J.-S.; Mirkin, C.A. Three-Layer Composite Magnetic Nanoparticle Probes for DNA. J. Am. Chem. Soc. 2005, 127, 15362–15363. [Google Scholar] [CrossRef]
- Kralj, S.; Makovec, D.; Čampelj, S.; Drofenik, M. Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity. J. Magn. Magn. Mater. 2010, 322, 1847–1853. [Google Scholar] [CrossRef]
- Kralj, S.; Drofenik, M.; Makovec, D. Controlled surface functionalization of silica-coated magnetic nanoparticles with terminal amino and carboxyl groups. J. Nanopart. Res. 2011, 13, 2829–2841. [Google Scholar] [CrossRef]
- Shah, N.; Nisar, N.; Rehan, T.; Naeem, M.; Ul-Islam, M. Microwave-assisted synthesis of a magnetic core–shell material composed of Fe3O4@SiO2@poly(methacrylamide-co-acrylic acid) for an anticancer drug loading. Appl. Nanosci. 2022, 1–8. [Google Scholar] [CrossRef]
- Kalvakuntla, S.; Deshpande, M.; Attari, Z.; Kunnatur, B.K. Preparation and Characterization of Nanosuspension of Aprepitant by H96 Process. Adv. Pharm. Bull. 2016, 6, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Ashok, S.; Raghunadhababu, C.V.; Varma, M.S.; Balaswamy, G. Separation and quantification of process related impurities and diastereomers in aprepitant bulk drug substance. J. Liq. Chromatogr. Relat. Technol. 2012, 35, 677–687. [Google Scholar] [CrossRef]
- Nama, S.; Kumar, P.R.; Avanapu, S.R. A validated stability indicating RP-HPLC method for the determination of aprepitant in bulk and pharmaceutical dosage forms. Recent Res. Sci. Technol. 2010, 3, 759–764. [Google Scholar]
- Kishore, M.S.; Rambabu, C. Development and Validation of UV Spectrophotometric method for the estimation of Sofosbuvir and Ledipasvir in combined Pharmaceutical dosage forms. Int. J. ChemTech Res. 2019, 12, 33–40. [Google Scholar] [CrossRef]
- Sofia, M.J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P.G.; Ross, B.S.; Wang, P.; Zhang, H. Discovery of a β-d-2′-deoxy-2′-α-fluoro-2′-β-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J. Med. Chem. 2010, 53, 7202–7218. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Approves Sovaldi for Chronic Hepatitis C; FDA Press Release: Foster City, CA, USA, 2013.
- Carey, L. What is the role of sofosbuvir in treating hepatitis C infection? J. Am. Acad. Pas 2015, 28, 16–19. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Sandeep, S. Synthesis and characterization of molecularly imprinted polymer of N-maleoylchitosan-grafted-2-acrylamido-2-methylpropanesulfonic acid and its controlled delivery and recognition of bovine serum albumin. Polym. Chem. 2011, 2, 2052–2061. [Google Scholar] [CrossRef]
- Bakr, A.-S.A.; Al-Shafey, H.I.; Arafa, E.I.; El Naggar, A.M. Synthesis and Characterization of Polymerized Acrylamide Coupled with Acrylamido-2-Methyl-1-Propane Sulfonic Acid-Montmorillonite Structure as a Novel Nanocomposite for Cd (II) Removal from Aqueous Solutions. J. Chem. Eng. Data 2020, 65, 4079–4091. [Google Scholar] [CrossRef]
- Awadallah-F, A.; El-Wahab, S.Y.A.; Al-Shafey, H. Impact of surfactant on the pore and particle sizes of copolymer (2-acrylamido-2-methylpropane sulfonic acid/acrylamide) nanohydrogels for controlled release of 5-fluorouracil. Polym. Eng. Sci. 2018, 58, 94–102. [Google Scholar] [CrossRef]
- Singh, B.; Bala, R. Design of dietary polysaccharide and binary monomer mixture of acrylamide and 2-acrylamido-2-methylpropane sulphonic acid based antiviral drug delivery devices. Chem. Eng. Res. Des. 2012, 90, 346–358. [Google Scholar] [CrossRef]
- Devi, N.; Narzary, A. Release Dynamics of Brufen from a Drug-Loaded Polymer Hydrogel Containing Polyvinyl Alcohol, 2-Acrylamide-2-methylpropane Sulfonic Acid and Acrylamide. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 821–833. [Google Scholar] [CrossRef]
- Gad, Y. Preparation and characterization of poly (2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment. Radiat. Phys. Chem. 2008, 77, 1101–1107. [Google Scholar] [CrossRef]
- Khan, Z.; Minhas, M.U.; Ahmad, M.; Khan, K.U.; Sohail, M.; Khalid, I. Functionalized pectin hydrogels by cross-linking with monomer: Synthesis, characterization, drug release and pectinase degradation studies. Polym. Bull. 2020, 77, 339–356. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Lu, Y.; Xu, Y.; Wang, C.; Yu, D.-G.; Kim, I. Recent Advances in Poly(α-L-glutamic acid)-Based Nanomaterials for Drug Delivery. Biomolecules 2022, 12, 636. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, S.; Xu, Y.; Shi, X.; Zhang, M.; Huang, Y.; Liang, Y.; Chen, Y.; Ji, W.; Kim, J.R.; et al. Engineering of hollow polymeric nanosphere-supported imidazolium-based ionic liquids with enhanced antimicrobial activities. Nano Res. 2022, 15, 5556–5568. [Google Scholar] [CrossRef]
- Al-Kinani, M.A.; Haider, A.J.; Al-Musawi, S. Design, Construction and Characterization of Intelligence Polymer Coated Core–Shell Nanocarrier for Curcumin Drug Encapsulation and Delivery in Lung Cancer Therapy Purposes. J. Inorg. Organomet. Polym. Mater. 2021, 31, 70–79. [Google Scholar] [CrossRef]
- Izadiyan, Z.; Shameli, K.; Miyake, M.; Teow, S.; Peh, S.; Mohamad, S.E.; Husna, S.; Tai, M. Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect. Mater. Sci. Eng. C 2019, 96, 51–57. [Google Scholar] [CrossRef]
- Singh, A.; Dilnawaz, F.; Mewar, S.; Sharma, U.; Jagannathan, N.R.; Sahoo, S.K. Composite Polymeric Magnetic Nanoparticles for Co-Delivery of Hydrophobic and Hydrophilic Anticancer Drugs and MRI Imaging for Cancer Therapy. ACS Appl. Mater. Interfaces. 2011, 3, 842–856. [Google Scholar] [CrossRef]
- Babaladimath, G.; Badalamoole, V. Magnetic nanoparticles embedded in pectin-based hydrogel for the sustained release of diclofenac sodium. Polym. Int. 2018, 67, 983–992. [Google Scholar] [CrossRef]
- El-Mahdy, G.A.; Atta, A.M.; Al-Lohedan, H.A. Synthesis and evaluation of poly (sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel. Molecules 2014, 19, 1713–1731. [Google Scholar] [CrossRef] [Green Version]
- Pattni, B.S.; Chupin, V.V.; Torchilin, V.P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Lei, L.; Shi, S.; Li, X. Stimulus-Responsive Hydrogel for Ophthalmic Drug Delivery. Macromol. Biosci. 2019, 19, e1900001. [Google Scholar] [CrossRef]
- Kesharwani, P.; Gothwal, A.; Iyer, A.K.; Jain, K.; Chourasia, M.K.; Gupta, U. Dendrimer nanohybrid carrier systems: An expanding horizon for targeted drug and gene delivery. Drug Discov. Today 2018, 23, 300–314. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, J.; Zhang, T.; Peng, Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J. Control. Release 2018, 286, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, E.; Ansari, L.; Abnous, K.; Taghdisi, S.M.; Charbgoo, F.; Ramezani, M.; Alibolandi, M. Silica based hybrid materials for drug delivery and bioimaging. J. Control. Release 2018, 277, 57–76. [Google Scholar] [CrossRef]
- Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003. [Google Scholar] [CrossRef]
- Gao, J.; Dutta, K.; Zhuang, J.; Thayumanavan, S. Cellular-and Subcellular-Targeted Delivery Using a Simple All-in-One Polymeric Nanoassembly. Angew. Chem. Int. Ed. 2020, 59, 23466–23470. [Google Scholar] [CrossRef]
- Shahriari, M.; Zahiri, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release 2019, 308, 172–189. [Google Scholar] [CrossRef]
- Shah, N.; Khan, Z.U.; Hussain, M.; Rehan, T.; Khan, A. Characterization study of polyAMPS@BMA core-shell particles using two types of RAFT agents. Mater. Sci. 2021, 39, 200–208. [Google Scholar] [CrossRef]
- Bonyasi, F.; Hekmati, M.; Veisi, H. Preparation of core/shell nanostructure Fe3O4@PEG400-SO3H as heterogeneous and magnetically recyclable nanocatalyst for one-pot synthesis of substituted pyrroles by Paal-Knorr reaction at room temperature. J. Colloid Interface Sci. 2017, 496, 177–187. [Google Scholar] [CrossRef]
- Pasandideh, E.K.; Kakavandi, B.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Esrafili, A.; Kalantary, R.R. Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal. J. Environ. Health Sci. Eng. 2016, 14, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, T.J.; El Zowalaty, M.E.; Ismail, M.; Hussein, M.Z.; Dorniani, D.; Hussein-Al-Ali, S.H. Novel kojic acid-polymer-based magnetic nanocomposites for medical applications. Int. J. Nanomed. 2014, 9, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Mendonça, E.S.D.T.; de Faria, A.C.B.; Dias, S.C.L.; Aragón, F.F.H.; Mantilla, J.C.; Coaquira, J.A.H.; Dias, J.A. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surf. Interfaces 2019, 14, 34–43. [Google Scholar] [CrossRef]
- Baghersad, M.H.; Jamshidi, S.; Habibi, A.; Salimi, A. Synthesis, Characterization, and In Vitro Evaluation of Super Paramagnetic Nanoparticles Grafted with PAMPS for Controlled Delivery of Cationic Drugs. ChemistrySelect 2019, 4, 810–815. [Google Scholar] [CrossRef]
- Arghan, M.; Koukabi, N.; Kolvari, E. Mizoroki–Heck and Suzuki–Miyaura reactions mediated by poly (2-acrylamido-2-methyl-1-propanesulfonic acid)-stabilized magnetically separable palladium catalyst. Appl. Organomet. Chem. 2018, 32, e4346. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, W.; Tao, M.; Zhang, X.; Wang, X.; Wang, X.; Chen, L. Decorated-magnetic-nanoparticle-supported bromine as a recyclable catalyst for the oxidation of sulfides. J. Appl. Polym. Sci. 2018, 135, 46036. [Google Scholar] [CrossRef]
- Karimi-Chayjani, R.; Daneshvar, N.; Langarudi, M.S.N.; Shirini, F.; Tajik, H. Silica-coated magnetic nanoparticles containing bis dicationic bridge for the synthesis of 1,2,4-triazolo pyrimidine/ quinazolinone derivatives. J. Mol. Struct. 2020, 1199, 126891. [Google Scholar] [CrossRef]
- Dhillon, R.; Ojha, R.; Bedi, N. Preparation, Characterization and Optimization of Poloxamer Solid Dispersions of a Poorly Water Soluble Drug Aprepitant. Br. J. Pharm. Res. 2014, 4, 2436–2454. [Google Scholar] [CrossRef]
- Sayad, B.; Sobhani, M.; Khodarahmi, R. Sofosbuvir as repurposed antiviral drug against COVID-19: Why were we convinced to evaluate the drug in a registered/approved clinical trial? Arch. Med. Res. 2020, 51, 577–581. [Google Scholar] [CrossRef]
- Liu, Y. New insights into pseudo-second-order kinetic equation for adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 275–278. [Google Scholar] [CrossRef]
- Gupta, N.; Kushwaha, A.K.; Chattopadhyaya, M. Adsorptive removal of Pb2+, Co2+ and Ni2+ by hydroxyapatite/chitosan composite from aqueous solution. J. Taiwan Inst. Chem. Eng. 2012, 43, 125–131. [Google Scholar] [CrossRef]
- Roy, A.; Adhikari, B.; Majumder, S.B. Equilibrium, Kinetic, and Thermodynamic Studies of Azo Dye Adsorption from Aqueous Solution by Chemically Modified Lignocellulosic Jute Fiber. Ind. Eng. Chem. Res. 2013, 52, 6502–6512. [Google Scholar] [CrossRef]
- Ara, B.; Shah, J.; Rasul, M.; Aslam, S. Removal of metribuzin herbicide from aqueous solution using corn cob. Int. J. Sci. Environ. Technol. 2013, 2, 146–161. [Google Scholar]
S. No. | IONPs@SiO2:PA@B | IONPs@SiO2 (g) | PA@B (mL) | ABCA (mL) |
---|---|---|---|---|
1 | IONPs@SiO21:PA@B1 | 0.1 | 1 | 2 |
2 | IONPs@SiO21:PA@B3 | 0.1 | 3 | 2 |
3 | IONPs@SiO21:PA@B5 | 0.1 | 5 | 2 |
4 | IONPs@SiO23:PA@B5 | 0.3 | 5 | 2 |
5 | IONPs@SiO25:PA@B5 | 0.5 | 5 | 2 |
(A) | |||||
IONPs@SiO21:PA@B1 | IONPs@SiO21: PA@B3 | IONPs@SiO21: PA@B5 | IONPs@SiO23: PA@B5 | IONPs@SiO25: PA@B5 | |
qe (exp) mg/g | 193.82 | 193.903 | 194.02 | 194.02 | 194.06 |
Pseudo-first-order kinetic model | |||||
K1(min−1) | −0.035 | −0.18 | −0.042 | −0.015 | −0.042 |
qe (mg/g) | 8.18 | 9.79 | 9.86 | 4.56 | 9.98 |
R2 | 0.92 | 0.91 | 0.91 | 0.92 | 0.91 |
Pseudo-second-order kinetic model | |||||
K2(min−1) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
qe (mg/g) | 197.08 | 197.08 | 197.08 | 197.08 | 197.08 |
R2 | 1 | 1 | 1 | 1 | 1 |
Intra-particle diffusion model | |||||
Kint | 0.336 | 0.338 | 0.342 | 0.342 | 0.345 |
C | 189.18 | 189.25 | 189.33 | 189.34 | 189.32 |
R2 | 0.901 | 0.898 | 0.897 | 0.893 | 0.898 |
(B) | |||||
IONPs@SiO21:PA@B1 | IONPs@SiO21:PA@B3 | IONPs@SiO21:PA@B5 | IONPs@SiO23:PA@B5 | IONPs@SiO25:PA@B5 | |
qe (exp) mg/g | 194.29 | 194.43 | 194.53 | 194.57 | 194.57 |
Pseudo-first-order kinetic model | |||||
K1(min−1) | −0.027 | −0.026 | −0.025 | −0.027 | −0.029 |
qe (mg/g) | 7.05 | 6.92 | 6.73 | 7.24 | 7.57 |
R2 | 0.93 | 0.94 | 0.94 | 0.93 | 0.93 |
Pseudo-second-order kinetic model | |||||
K2(min−1) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
qe (mg/g) | 196.07 | 196.07 | 196.07 | 196.07 | 196.07 |
R2 | 1 | 1 | 1 | 1 | 1 |
Intra-particle diffusion model | |||||
Kint | 0.366 | 0.366 | 0.366 | 0.366 | 0.370 |
C | 187.37 | 187.37 | 189.37 | 189.41 | 189.42 |
R2 | 0.895 | 0.899 | 0.902 | 0.898 | 0.893 |
(A) | |||||
IONPs@SiO21:PA@B1 | IONPs@SiO21:PA@B3 | IONPs@SiO21:PA@B5 | IONPs@SiO23:PA@B5 | IONPs@SiO25:PA@B5 | |
N | −24.69 | −25 | −25.31 | −25.31 | −25.38 |
Kf | 216.57 | 216.27 | 215.97 | 216.02 | 215.87 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
KL (L/g) | −243.9 | −250 | −256.41 | −256.41 | −256.41 |
AL (L/mol) | −1.317 | −1.35 | −1.38 | −1.38 | −1.38 |
Qͦ | 185.18 | 185.18 | 185.18 | 185.18 | 185.18 |
R2 | 1 | 1 | 1 | 1 | 1 |
(B) | |||||
IONPs@SiO21:PA@B1 | IONPs@SiO21:PA@B3 | IONPs@SiO21:PA@B5 | IONPs@SiO23:PA@B5 | IONPs@SiO25:PA@B5 | |
N | −25.83 | −26.24 | −26.52 | −26.73 | −26.80 |
Kf | 215.42 | 215.07 | 214.78 | 214.58 | 214.53 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
KL (L/g) | −270.27 | −277.77 | −277.77 | −285.71 | −285.71 |
AL (L/mol) | −1.45 | −1.5 | −1.5 | −1.54 | −1.54 |
Qͦ | 185.18 | 185.18 | 185.18 | 185.18 | 185.18 |
R2 | 1 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Rehan, T.; Goh, K.W.; Shah, S.I.; Khan, A.; Ming, L.C.; Shah, N. Fabrication of a Double Core–Shell Particle-Based Magnetic Nanocomposite for Effective Adsorption-Controlled Release of Drugs. Polymers 2022, 14, 2681. https://doi.org/10.3390/polym14132681
Hussain M, Rehan T, Goh KW, Shah SI, Khan A, Ming LC, Shah N. Fabrication of a Double Core–Shell Particle-Based Magnetic Nanocomposite for Effective Adsorption-Controlled Release of Drugs. Polymers. 2022; 14(13):2681. https://doi.org/10.3390/polym14132681
Chicago/Turabian StyleHussain, Manzoor, Touseef Rehan, Khang Wen Goh, Sayyed Ibrahim Shah, Abbas Khan, Long Chiau Ming, and Nasrullah Shah. 2022. "Fabrication of a Double Core–Shell Particle-Based Magnetic Nanocomposite for Effective Adsorption-Controlled Release of Drugs" Polymers 14, no. 13: 2681. https://doi.org/10.3390/polym14132681
APA StyleHussain, M., Rehan, T., Goh, K. W., Shah, S. I., Khan, A., Ming, L. C., & Shah, N. (2022). Fabrication of a Double Core–Shell Particle-Based Magnetic Nanocomposite for Effective Adsorption-Controlled Release of Drugs. Polymers, 14(13), 2681. https://doi.org/10.3390/polym14132681