The Effect of Physical Aging and Degradation on the Re-Use of Polyamide 12 in Powder Bed Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterisation of Virgin PA-12 Powder
2.2. Oven Conditioning of Virgin PA-12 Powder
2.2.1. Thermal Analysis Using Differential Scanning Calorimetry (DSC)
2.2.2. Attenuated Total Reflectance−Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.3. Fabrication and Conditioning of PA-12 Tensile Specimens
2.4. Effect of Drying PA-12 Powder before Oven Conditioning
3. Results and Discussion
3.1. Characterisation of Virgin PA-12 Powder
3.1.1. Sample Variability
3.1.2. Initial Assessment of Thermal Stability
3.2. Oven Conditioning of Virgin PA-12 Powder
3.2.1. Differential Scanning Calorimetry (DSC)
The First 100 h of Storage
Storage Times Greater Than 100 h
3.2.2. Attenuated Total Reflection—Fourier Transform Infrared Spectroscopy (ATR-FTIR)
3.2.3. Relationship between Aging and Degradation Processes
3.2.4. Mechanical Properties of PA-12 Plaques
3.3. Oven Conditioning of Pre-Dried PA-12 Powder
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. DSC Data
Storage Time (Hours) | Peak Tm (°C) | Tm Endpoint (°C) | ΔHf (Jg−1) | Crystallinity (%) | Peak Tc (°C) | ΔHC (Jg−1) |
---|---|---|---|---|---|---|
0 | 185.8 (±0.27) | 187.8 (±0.27) | 107 (±3.2) | 51 (±1.5) | 144.7 (±0.21) | 54 (±2.3) |
24 | 188.0 (±0.00) | 190.9 (±0.58) | 109 (±4.2) | 52 (±2.1) | 144.0 (±0.13) | 56 (±3.5) |
48 | 188.9 (±0.11) | 193.6 (±0.14) | 111 (±2.9) | 53 (±1.4) | 143.4 (±0.11) | 59 (±2.3) |
72 | 189.4 (±0.11) | 193.4 (±0.43) | 111 (±3.1) | 53 (±1.5) | 143.2 (±0.22) | 60 (±2.7) |
96 | 190.0 (±0.28) | 194.5 (±0.42) | 113 (±2.8) | 54 (±1.4) | 142.7 (±0.39) | 58 (±1.7) |
120 | 189.1 (±0.11) | 192.8 (±0.38) | 106 (±0.8) | 51 (±0.4) | 142.9 (±0.11) | 54 (±1.8) |
144 | 188.9 (±0.20) | 192.8 (±0.28) | 117 (±7.0) | 56 (±3.4) | 141.9 (±0.11) | 62 (±2.8) |
168 | 188.4 (±0.08) | 192.4 (±0.21) | 115 (±0.9) | 55 (±0.4) | 141.6 (±0.10) | 59 (±1.2) |
192 | 188.4 (±0.39) | 190.8 (±0.70) | 95 (±7.3) | 45 (±3.5) | 140.2 (±0.67) | 48 (±4.1) |
226 | 188.7 (±0.09) | 191.3 (±0.38) | 91 (±6.2) | 43 (±2.9) | 141.0 (±0.17) | 48 (±3.5) |
266 | 184.8 (±0.45) | 187.1 (±0.63) | 107 (±4.7) | 51 (±2.2) | 138.3 (±0.17) | 58 (±0.1) |
312 | 184.6 (±0.02) | 187.5 (±0.00) | 81 (±0.7) | 39 (±2.5) | 134.0 (±0.49) | 47 (±0.2) |
336 | 180.7 (±0.04) | 184.5 (±0.79) | 79 (±7.2) | 38 (±3.5) | 131.1 (±1.24) | 49 (±0.9) |
References
- Dotchev, K.; Yusoff, W. Recycling of polyamide 12 based powders in the laser sintering process. Rapid Prototyp. J. 2009, 15, 192–203. [Google Scholar] [CrossRef]
- Pham, D.T.; Dotchev, K.D.; Yusoff, W.A.Y. Deterioration of polyamide powder properties in the laser sintering process. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 2163–2176. [Google Scholar] [CrossRef]
- Goodridge, R.; Ziegelmeier, S. Powder bed fusion of polymers. Laser Addit. Manuf. 2017, 181–204. [Google Scholar] [CrossRef]
- Goodridge, R.D.; Tuck, C.J.; Hague, R.J.M. Laser sintering of polyamides and other polymers. Prog. Mater. Sci. 2012, 57, 229–267. [Google Scholar] [CrossRef]
- Weinmann, S.; Bonten, C. Recycling of PA12 powder for selective laser sintering. AIP Conf. Proc. 2020, 2289, 020056. [Google Scholar] [CrossRef]
- Duan, B.; Wang, M. Selective laser sintering and its application in biomedical engineering. MRS Bull. 2011, 36, 998–1005. [Google Scholar] [CrossRef] [Green Version]
- Pandelidi, C.; Lee, K.P.M.; Kajtaz, M. Effects of polyamide-11 powder refresh ratios in multi-jet fusion: A comparison of new and used powder. Addit. Manuf. 2021, 40, 101933. [Google Scholar] [CrossRef]
- What Is Selective Laser Sintering 3D Printing Used for? [Internet]. 2019. Available online: https://www.spilasers.com/application-additive-manufacturing/what-is-selective-laser-sintering-used-for/ (accessed on 15 June 2021).
- Alexandrea, P. The Complete Guide to Selective Laser Sintering (SLS) in 3D Printing. [Internet]. 2019. Available online: https://www.3dnatives.com/en/selective-laser-sintering100420174/ (accessed on 3 March 2022).
- Riedelbauch, J.; Rietzel, D.; Witt, G. Analysis of material aging and the influence on the mechanical properties of polyamide 12 in the Multi Jet Fusion process. Addit. Manuf. 2019, 27, 259–266. [Google Scholar] [CrossRef]
- O’Connor, H.J.; Dickson, A.; Dowling, D. Evaluation of the mechanical performance of polymer parts fabricated using a production scale multi jet fusion printing process. Addit. Manuf. 2018, 22, 381–387. [Google Scholar] [CrossRef]
- Paolucci, F.; van Mook, M.; Govaert, L.; Peters, G. Influence of post-condensation on the crystallization kinetics of PA12: From virgin to reused powder. Polymer 2019, 175, 161–170. [Google Scholar] [CrossRef]
- Dadbakhsh, S.; Verbelen, L.; Verkinderen, O.; Strobbe, D.; Van Puyvelde, P.; Kruth, J.-P. Effect of PA12 powder reuse on coalescence behaviour and microstructure of SLS parts. Eur. Polym. J. 2017, 92, 250–262. [Google Scholar] [CrossRef]
- Zarringhalam, H.; Hopkinson, N.; Kamperman, N.; de Vlieger, J. Effects of processing on microstructure and properties of SLS Nylon 12. Mater. Sci. Eng. A 2006, 435–436, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Majewski, C.E.; Zarringhalam, H.; Hopkinson, N. (Eds.) Effects of degree of particle melt and crystallinity in SLS Nylon-12 parts. In Proceedings of the 19th Annual International Solid Freeform Fabrication Symposium, SFF 2008, Austin, TX, USA, 4–6 August 2008; University of Texas at Austin (Freeform): Austin, TX, USA, 2008. [Google Scholar]
- Josupeit, S.; Schmid, H.-J. Experimental analysis and modeling of local ageing effects during laser sintering of polyamide 12 in regard to individual thermal histories. J. Appl. Polym. Sci. 2017, 134, 45435. [Google Scholar] [CrossRef]
- Sillani, F.; Kleijnen, R.G.; Vetterli, M.; Schmid, M.; Wegener, K. Selective laser sintering and multi jet fusion: Process-induced modification of the raw materials and analyses of parts performance. Addit. Manuf. 2019, 27, 32–41. [Google Scholar] [CrossRef]
- Berretta, S.; Evans, K.; Ghita, O. Predicting processing parameters in high temperature laser sintering (HT-LS) from powder properties. Mater. Des. 2016, 105, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Duddleston, L.; Puck, A.; Harris, A.; Doll, N.; Osswald, T. Differential Scanning Calorimetry (DSC) Quantification of Polyamide 12 (Nylon 12) Degradation during the Selective Laser Sintering (SLS) Process. In Proceedings of the Society of Plastics Engineers—ANTEC 2016, Indianapolis, Indiana, 23–25 May 2016. [Google Scholar]
- Wudy, K.; Drummer, D. Aging effects of polyamide 12 in selective laser sintering: Molecular weight distribution and thermal properties. Addit. Manuf. 2018, 25, 1–9. [Google Scholar] [CrossRef]
- Kuehnlein, F.; Drummer, D.; Rietzel, D.; Seefried, A. Degradation behavior and material properties of pa12-plastic powders processed by powder based additive manufacturing technologies. In Annals of DAAAM for 2010 & Proceedings of the 21st International DAAAM Symposium; DAAAM International: Vienna, Austria, 2010; Volume 21, pp. 1726–9679. [Google Scholar]
- Yang, F.; Jiang, T.; Lalier, G.; Bartolone, J.; Chen, X. A process control and interlayer heating approach to reuse polyamide 12 powders and create parts with improved mechanical properties in selective laser sintering. J. Manuf. Process. 2020, 57, 828–846. [Google Scholar] [CrossRef]
- Mokrane, A.; Boutaous, M.; Xin, S. Process of selective laser sintering of polymer powders: Modeling, simulation, and validation. C. R. Mécanique 2018, 346, 1087–1103. [Google Scholar] [CrossRef]
- Wudy, K.; Drummer, D.; Kuhnlein, F.; Drexler, M. Influence of degradation behavior of polyamide 12 powders in laser sintering process on produced parts. In Proceedings of the PPS-29: The 29th International Conference of the Polymer Processing Society—Conference Papers, Nuremberg, Germany, 15–19 July 2013; Volume 1593, pp. 691–695. [Google Scholar] [CrossRef] [Green Version]
- Drummer, D.; Wudy, K.; Drexler, M. Influence of Energy Input on Degradation Behavior of Plastic Components Manufactured by Selective Laser Melting. Phys. Procedia 2014, 56, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Wudy, K.; Drummer, D. (Eds.) Aging behavior of polyamide 12: Interrelation between bulk characteristics and part properties. In Proceedings of the 26th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 8–10 August 2016. [Google Scholar]
- Benzarti, K.; Colin, X. Understanding the durability of advanced fibre-reinforced polymer (FRP) composites for structural applications. In Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Elsevier: Amsterdam, The Netherlands, 2013; pp. 361–439. [Google Scholar] [CrossRef]
- Fischer, E.W. Effect of annealing and temperature on the morphological structure of polymers. Pure Appl. Chem. 1972, 31, 113–132. [Google Scholar] [CrossRef]
- Koch, M.H.J.; de Jeu, W.H. Crystalline Structure and Morphology in Nylon-12: A Small- and Wide-Angle X-ray Scattering Study. Macromolecules 2003, 36, 1626–1632. [Google Scholar]
- Marchessault, R.H. Principles of Polymer Morphology; D. C. Bassett, Cambridge Solid State Series; Cambridge University Press: Cambridge, UK, 1981; 250p, No price given. J. Polym. Sci. Polym. Lett. Ed. 1982, 20, 279–280. [Google Scholar]
- Faraj, J.; Boyard, N.; Pignon, B.; Bailleul, J.-L.; Delaunay, D.; Orange, G. Crystallization kinetics of new low viscosity polyamides 66 for thermoplastic composites processing. Thermochim. Acta 2016, 624, 27–34. [Google Scholar] [CrossRef]
- Wang, G.; Bu, H. Crystallization and melting of nylon610. Chin. J. Polym. Sci. 1998, 16, 241. [Google Scholar]
- Dupin, S.; Lame, O.; Barrès, C.; Charmeau, J.-Y. Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur. Polym. J. 2012, 48, 1611–1621. [Google Scholar] [CrossRef]
- Galati, M.; Calignano, F.; Defanti, S.; Denti, L. Disclosing the build-up mechanisms of multi jet fusion: Experimental insight into the characteristics of starting materials and finished parts. J. Manuf. Process. 2020, 57, 244–253. [Google Scholar] [CrossRef]
- Duddleston, L. Polyamide (Nylon) 12 Powder Degradation during the Selective Laser Sintering Process; MSc, University of Wisconsin: Madison, WI, USA, 2015. [Google Scholar]
- Deshoulles, Q.; Le Gall, M.; Dreanno, C.; Arhant, M.; Priour, D.; Le Gac, P.-Y. Modelling pure polyamide 6 hydrolysis: Influence of water content in the amorphous phase. Polym. Degrad. Stab. 2020, 183, 109435. [Google Scholar] [CrossRef]
- Okamba-Diogo, O.; Richaud, E.; Verdu, J.; Fernagut, F.; Guilment, J.; Fayolle, B. Investigation of polyamide 11 embrittlement during oxidative degradation. Polymer 2016, 82, 49–56. [Google Scholar] [CrossRef]
- Rabello, M.S.; White, J.R. Crystallization and melting behaviour of photodegraded polypropylene—I. Chemi-crystallization. Polymer 1997, 38, 6379–6387. [Google Scholar] [CrossRef]
- Gornet, T.J.; Davis, K.R.; Starr, T.L.; Mulloy, K.M. Characterization of Selective Laser Sintering™ Materials to Determine Process Stability. Mech. Eng. 2002. [Google Scholar] [CrossRef]
- Gogolewski, S.; Czerntawska, K.; Gastorek, M. Effect of annealing on thermal properties and crystalline structure of polyamides. Nylon 12 (polylaurolactam). Colloid Polym. Sci. 1980, 258, 1130–1136. [Google Scholar] [CrossRef]
- Cai, C.; Tey, W.S.; Chen, J.; Zhu, W.; Liu, X.; Liu, T.; Zhao, L.; Zhou, K. Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. J. Mater. Process. Technol. 2020, 288, 116882. [Google Scholar] [CrossRef]
- Bourell, D.L.; Watt, T.J.; Leigh, D.K.; Fulcher, B. Performance Limitations in Polymer Laser Sintering. Phys. Procedia 2014, 56, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Benz, J.; Bonten, C. Temperature induced ageing of PA12 powder during selective laser sintering process. AIP Conf. Proc. 2019, 2055, 140001. [Google Scholar] [CrossRef]
- Alexey, S.; Kabalnov, J.T.W.; Kasperchik, V. Three-Dimensional (3D) Printing. Patent WO2016175748A1, 2016. [Google Scholar]
- Wunderlich, B. Macromolecular Physics: Crystal Melting; Academic Press: Waltham, MA, USA, 2013. [Google Scholar]
- Gogolewski, S.; Gasiorek, M.; Czerniawska, K.; Pennings, A.J. Annealing of melt-crystallized nylon 6. Colloid Polym. Sci. 1982, 260, 859–863. [Google Scholar] [CrossRef]
- Zhang, Q.; Mo, Z.; Liu, S.; Zhang, H. Influence of Annealing on Structure of Nylon 11. Macromolecules 2000, 33, 5999–6005. [Google Scholar] [CrossRef]
- Maïza, S.; Lefebvre, X.; Brusselle-Dupend, N.; Klopffer, M.-H.; Cangémi, L.; Castagnet, S.; Grandidier, J.-C. Physicochemical and mechanical degradation of polyamide 11 induced by hydrolysis and thermal aging. J. Appl. Polym. Sci. 2019, 136. [Google Scholar] [CrossRef]
- Hay, J.N. Secondary crystallization kinetics. Polym. Cryst. 2018, 1, e10007. [Google Scholar] [CrossRef]
- Hay, J.N. Crystallisation kinetics and melting studies. Br. Polym. J. 1979, 11, 137–145. [Google Scholar] [CrossRef]
- Ferreira, I.; Melo, C.; Neto, R.; Machado, M.; Alves, J.L.; Mould, S. Study of the annealing influence on the mechanical performance of PA12 and PA12 fibre reinforced FFF printed specimens. Rapid Prototyp. J. 2020, 26, 1761–1770. [Google Scholar] [CrossRef]
- Pliquet, M.; Rapeaux, M.; Delange, F.; Bussiere, P.; Therias, S.; Gardette, J. Multiscale analysis of the thermal degradation of polyamide 6,6: Correlating chemical structure to mechanical properties. Polym. Degrad. Stab. 2021, 185, 109496. [Google Scholar] [CrossRef]
- Su, K.-H.; Lin, J.-H.; Lin, C.-C. Influence of reprocessing on the mechanical properties and structure of polyamide 6. J. Mater. Process. Technol. 2007, 192–193, 532–538. [Google Scholar] [CrossRef]
- Dong, W.; Gijsman, P. Influence of temperature on the thermo-oxidative degradation of polyamide 6 films. Polym. Degrad. Stab. 2010, 95, 1054–1062. [Google Scholar] [CrossRef]
- Gonçalves, E.S.; Poulsen, L.; Ogilby, P.R. Mechanism of the temperature-dependent degradation of polyamide 66 films exposed to water. Polym. Degrad. Stab. 2007, 92, 1977–1985. [Google Scholar] [CrossRef]
- Ksouri, I.; De Almeida, O.; Haddar, N. Long term ageing of polyamide 6 and polyamide 6 reinforced with 30% of glass fibers: Physicochemical, mechanical and morphological characterization. J. Polym. Res. 2017, 24, 133. [Google Scholar] [CrossRef]
- Sang, L.; Wang, C.; Wang, Y.; Wei, Z. Thermo-oxidative ageing effect on mechanical properties and morphology of short fibre reinforced polyamide composites—Comparison of carbon and glass fibres. RSC Adv. 2017, 7, 43334–43344. [Google Scholar] [CrossRef]
- Richaud, E.; Diogo, O.O.; Fayolle, B.; Verdu, J.; Guilment, J.; Fernagut, F. Review: Auto-oxidation of aliphatic polyamides. Polym. Degrad. Stab. 2013, 98, 1929–1939. [Google Scholar] [CrossRef] [Green Version]
- Levantovskaya, I.I.; Kovarskaya, B.M.; Dralyuk, G.V.; Neiman, M.B. Mechanism of thermal oxidative degradation of polyamides. Polym. Sci. USSR 1964, 6, 2089–2095. [Google Scholar] [CrossRef]
- Shockley, M.F.; Muliana, A.H. Modeling temporal and spatial changes during hydrolytic degradation and erosion in biodegradable polymers. Polym. Degrad. Stab. 2020, 180, 109298. [Google Scholar] [CrossRef]
- Weir, N.; Buchanan, F.; Orr, J.; Dickson, G. Degradation of poly-L-lactide. Part 1: In vitro and in vivo physiological temperature degradation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2004, 218, 307–319. [Google Scholar] [CrossRef]
- Snegirev, A.; Talalov, V.; Stepanov, V.; Korobeinichev, O.; Gerasimov, I.; Shmakov, A. Autocatalysis in thermal decomposition of polymers. Polym. Degrad. Stab. 2017, 137, 151–161. [Google Scholar] [CrossRef]
- Matisová-Rychlá, L.; Rychlý, J.; Tiemblo, P.; Gómez-Elvira, J.; Elvira, M. Thermal oxidation and its relation to chemiluminescence from polyolefins and polyamides. Macromol. Symp. 2004. [Google Scholar] [CrossRef]
- Flory, P.J. Tensile Strength in Relation to Molecular Weight of High Polymers. J. Am. Chem. Soc. 1945, 67, 2048–2050. [Google Scholar] [CrossRef]
- Termonia, Y.; Meakin, P.; Smith, P. Theoretical study of the influence of the molecular weight on the maximum tensile strength of polymer fibers. Macromolecules 1985, 18, 2246–2252. [Google Scholar] [CrossRef]
- Hallam, M.A.; Cansfield, D.L.M.; Ward, I.M.; Pollard, G. A study of the effect of molecular weight on the tensile strength of ultra-high modulus polyethylenes. J. Mater. Sci. 1986, 21, 4199–4205. [Google Scholar] [CrossRef]
- Fanconi, B.M. Chain scission and mechanical failure of polyethylene. J. Appl. Phys. 1983, 54, 5577–5582. [Google Scholar] [CrossRef]
- Goodridge, R.; Hague, R.; Tuck, C. Effect of long-term ageing on the tensile properties of a polyamide 12 laser sintering material. Polym. Test. 2010, 29, 483–493. [Google Scholar] [CrossRef]
- Schmid, M. 4.2.1.1 Crystallization and Melting (Sintering Window). In Laser Sintering with Plastics—Technology, Processes, and Materials; Hanser Publishers: Munich, Germany, 2014. [Google Scholar]
- Kohan, M. Nylon Plastics Handbook; Hanser: Munich, Germany, 1995. [Google Scholar]
Experiment | Sample Mass (mg) | Heating/Cooling Rate (Kmin−1) | Heating Range (°C) | No. of Heat−Cool Runs |
---|---|---|---|---|
Sample variability | 6 ± 0.5 | 10 | 25–220 | 2 |
Thermal stability | 40 | 25–205, 25–215, 25–225 | 25 | |
Post-oven Conditioning | 10 | 25–220 | 2 |
Storage Time (Hours) | Yield Strength (MPa) | Ultimate Tensile Strength (MPa) | Fracture Strength (MPa) |
---|---|---|---|
0 | 28.1 ± 1.2 | 62.1 ± 8.2 | 59.8 ± 7.2 |
24 | 27.1 ± 0.9 | 49.2 ± 2.8 | 44.8 ± 4.0 |
48 | 25.4 ± 0.6 | 47.1 ± 3.9 | 46.1 ± 4.7 |
72 | 25.3 ± 1.4 | 44.8 ± 2.0 | 44.0 ± 2.3 |
96 | 25.2 ± 1.8 | 34.6 ± 1.1 | 34.6 ± 1.1 |
144 | 11.6 ± 2.4 | 11.6 ± 2.4 | 11.6 ± 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanders, B.; Cant, E.; Amel, H.; Jenkins, M. The Effect of Physical Aging and Degradation on the Re-Use of Polyamide 12 in Powder Bed Fusion. Polymers 2022, 14, 2682. https://doi.org/10.3390/polym14132682
Sanders B, Cant E, Amel H, Jenkins M. The Effect of Physical Aging and Degradation on the Re-Use of Polyamide 12 in Powder Bed Fusion. Polymers. 2022; 14(13):2682. https://doi.org/10.3390/polym14132682
Chicago/Turabian StyleSanders, Benjamin, Edward Cant, Hoda Amel, and Michael Jenkins. 2022. "The Effect of Physical Aging and Degradation on the Re-Use of Polyamide 12 in Powder Bed Fusion" Polymers 14, no. 13: 2682. https://doi.org/10.3390/polym14132682
APA StyleSanders, B., Cant, E., Amel, H., & Jenkins, M. (2022). The Effect of Physical Aging and Degradation on the Re-Use of Polyamide 12 in Powder Bed Fusion. Polymers, 14(13), 2682. https://doi.org/10.3390/polym14132682