Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cohort Selection
2.2. Sample Collection
2.3. Sample Digestion and Filtration
2.4. Detection and Identification of MPs by Raman Microspectroscopy
2.5. Quality Assurance and Control (QA/QC)
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jadhav, E.B.; Sankhla, M.S.; Bhat, R.A.; Bhagat, D.S. Microplastics from food packaging: An overview of human consumption, health threats, and alternative solutions. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100608. [Google Scholar] [CrossRef]
- Lithner, D.; Larsson, Å.; Dave, G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Sci. Total Environ. 2011, 409, 3309–3324. [Google Scholar] [CrossRef] [PubMed]
- Plastics Europe Plastics—The Facts 2019 An Analysis of European Plastics Production, Demand and Waste Data; Royal Society of Chemistry: Lodon, UK, 2019.
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [Green Version]
- Conti, I.; Simioni, C.; Varano, G.; Brenna, C.; Costanzi, E.; Neri, L.M. Legislation to limit the environmental plastic and microplastic pollution and their influence on human exposure. Environ. Pollut. 2021, 288, 117708. [Google Scholar] [CrossRef]
- Browne, M.A.; Crump, P.; Niven, S.J.; Teuten, E.; Tonkin, A.; Galloway, T.; Thompson, R. Accumulation of Microplastic on Shorelines Woldwide: Sources and Sinks. Environ. Sci. Technol. 2011, 45, 9175–9179. [Google Scholar] [CrossRef] [PubMed]
- Salvador Cesa, F.; Turra, A.; Baruque-Ramos, J. Synthetic fibers as microplastics in the marine environment: A review from textile perspective with a focus on domestic washings. Sci. Total Environ. 2017, 598, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Hanun, J.N.; Hassan, F.; Jiang, J.-J. Occurrence, fate, and sorption behavior of contaminants of emerging concern to microplastics: Influence of the weathering/aging process. J. Environ. Chem. Eng. 2021, 9, 106290. [Google Scholar] [CrossRef]
- Kannan, K.; Vimalkumar, K. A Review of Human Exposure to Microplastics and Insights Into Microplastics as Obesogens. Front. Endocrinol. 2021, 12, 724989. [Google Scholar] [CrossRef]
- Sridharan, S.; Kumar, M.; Singh, L.; Bolan, N.S.; Saha, M. Microplastics as an emerging source of particulate air pollution: A critical review. J. Hazard. Mater. 2021, 418, 126245. [Google Scholar] [CrossRef]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Prata, J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alimba, C.G.; Faggio, C.; Sivanesan, S.; Ogunkanmi, A.L.; Krishnamurthi, K. Micro(nano)-plastics in the environment and risk of carcinogenesis: Insight into possible mechanisms. J. Hazard. Mater. 2021, 416, 126143. [Google Scholar] [CrossRef]
- Danopoulos, E.; Twiddy, M.; West, R.; Rotchell, J.M. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J. Hazard. Mater. 2021, 127861. [Google Scholar] [CrossRef]
- Han, Y.; Lian, F.; Xiao, Z.; Gu, S.; Cao, X.; Wang, Z.; Xing, B. Potential toxicity of nanoplastics to fish and aquatic invertebrates: Current understanding, mechanistic interpretation, and meta-analysis. J. Hazard. Mater. 2022, 427, 127870. [Google Scholar] [CrossRef]
- Yin, K.; Wang, Y.; Zhao, H.; Wang, D.; Guo, M.; Mu, M.; Liu, Y.; Nie, X.; Li, B.; Li, J.; et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total Environ. 2021, 774, 145758. [Google Scholar] [CrossRef]
- Käppler, A.; Fischer, D.; Oberbeckmann, S.; Schernewski, G.; Labrenz, M.; Eichhorn, K.-J.; Voit, B. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016, 408, 8377–8391. [Google Scholar] [CrossRef]
- Ribeiro-Claro, P.; Nolasco, M.M.; Araújo, C. Characterization of Microplastics by Raman Spectroscopy. Compr. Anal. Chem. 2017, 75, 119–151. [Google Scholar] [CrossRef]
- Di Renzo, L.; Mascilongo, G.; Berti, M.; Bogdanović, T.; Listeš, E.; Brkljača, M.; Notarstefano, V.; Gioacchini, G.; Giorgini, E.; Olivieri, V.; et al. Potential Impact of Microplastics and Additives on the Health Status of Loggerhead Turtles (Caretta caretta) Stranded Along the Central Adriatic Coast. Water Air Soil Pollut. 2021, 232, 98. [Google Scholar] [CrossRef]
- Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; et al. Plasticenta: First evidence of microplastics in human placenta. Environ. Int. 2021, 146, 106274. [Google Scholar] [CrossRef]
- Eidelman, A.I.; Schanler, R.J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. Breastfeeding and the Use of Human Milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [Green Version]
- Llorca, M.; Farré, M.; Picó, Y.; Teijón, M.L.; Álvarez, J.G.; Barceló, D. Infant exposure of perfluorinated compounds: Levels in breast milk and commercial baby food. Environ. Int. 2010, 36, 584–592. [Google Scholar] [CrossRef] [PubMed]
- LaKind, J.S.; Verner, M.-A.; Rogers, R.D.; Goeden, H.; Naiman, D.Q.; Marchitti, S.A.; Lehmann, G.M.; Hines, E.P.; Fenton, S.E. Current Breast Milk PFAS Levels in the United States and Canada: After All This Time, Why Don’t We Know More? Environ. Health Perspect. 2022, 130, 025002. [Google Scholar] [CrossRef] [PubMed]
- Jian, J.M.; Chen, D.; Han, F.J.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Sci. Total Environ. 2018, 636, 1058–1069. [Google Scholar] [CrossRef]
- Ministero della Salute Allattare al Seno-Un Investimento Per la Vita. 2019. Available online: https://www.salute.gov.it/portale/documentazione/p6_2_5_1.jsp?lingua=italiano&id=303 (accessed on 1 June 2022).
- Karami, A.; Golieskardi, A.; Choo, C.K.; Romano, N.; Ho, Y.B.; Salamatinia, B. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 2017, 578, 485–494. [Google Scholar] [CrossRef]
- Dong, M.; Zhang, Q.; Xing, X.; Chen, W.; She, Z.; Luo, Z. Raman spectra and surface changes of microplastics weathered under natural environments. Sci. Total Environ. 2020, 739, 139990. [Google Scholar] [CrossRef]
- SLOPP Library of Microplastics. Available online: https://rochmanlab.com/slopp-and-slopp-e-raman-spectral-libraries-for-microplastics-research (accessed on 1 June 2022).
- Imhof, H.K.; Laforsch, C.; Wiesheu, A.C.; Schmid, J.; Anger, P.M.; Niessner, R.; Ivleva, N.P. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes. Water Res. 2016, 98, 64–74. [Google Scholar] [CrossRef]
- Stoye, D.; Freitag, W. Paints, Coatings and Solvents; Wiley: Hoboken, NJ, USA, 1998; ISBN 9783527288632. [Google Scholar]
- Karthikeyan, B.S.; Ravichandran, J.; Aparna, S.R.; Samal, A. ExHuMId: A curated resource and analysis of Exposome of Human Milk across India. Chemosphere 2021, 271, 129583. [Google Scholar] [CrossRef]
- Lehmann, G.M.; LaKind, J.S.; Davis, M.H.; Hines, E.P.; Marchitti, S.A.; Alcala, C.; Lorber, M. Environmental Chemicals in Breast Milk and Formula: Exposure and Risk Assessment Implications. Environ. Health Perspect. 2018, 126, 096001. [Google Scholar] [CrossRef]
- Mead, M.N. Contaminants in Human Milk: Weighing the Risks against the Benefits of Breastfeeding. Environ. Health Perspect. 2008, 116, A426–A434. [Google Scholar] [CrossRef] [Green Version]
- Vasios, G.; Kosmidi, A.; Kalantzi, O.-I.; Tsantili-Kakoulidou, A.; Kavantzas, N.; Theocharis, S.; Giaginis, C. Simple physicochemical properties related with lipophilicity, polarity, molecular size and ionization status exert significant impact on the transfer of drugs and chemicals into human breast milk. Expert Opin. Drug Metab. Toxicol. 2016, 12, 1273–1278. [Google Scholar] [CrossRef] [PubMed]
- Lundqvist, C.; Zuurbier, M.; Leijs, M.; Johansson, C.; Ceccatelli, S.; Saunders, M.; Schoeters, G.; Ten Tusscher, G.; Koppe, J. The effects of PCBs and dioxins on child health. Acta Paediatr. 2006, 95, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Gibson, E.; Siegel, E.; Eniola, F.; Herbstman, J.; Factor-Litvak, P. Effects of Polybrominated Diphenyl Ethers on Child Cognitive, Behavioral, and Motor Development. Int. J. Environ. Res. Public Health 2018, 15, 1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Main, K.M.; Mortensen, G.K.; Kaleva, M.M.; Boisen, K.A.; Damgaard, I.N.; Chellakooty, M.; Schmidt, I.M.; Suomi, A.-M.; Virtanen, H.E.; Petersen, J.H.; et al. Human Breast Milk Contamination with Phthalates and Alterations of Endogenous Reproductive Hormones in Infants Three Months of Age. Environ. Health Perspect. 2006, 114, 270–276. [Google Scholar] [CrossRef]
- Braun, J.M.; Sathyanarayana, S.; Hauser, R. Phthalate exposure and children’s health. Curr. Opin. Pediatr. 2013, 25, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-B.; Chen, H.-Y.; Su, P.-H.; Huang, P.-C.; Sun, C.-W.; Wang, C.-J.; Chen, H.-Y.; Hsiung, C.A.; Wang, S.-L. Fetal and Childhood Exposure to Phthalate Diesters and Cognitive Function in Children Up to 12 Years of Age: Taiwanese Maternal and Infant Cohort Study. PLoS ONE 2015, 10, e0131910. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, J.P.; Duarte, A.C.; Santos-Echeandía, J.; Rocha-Santos, T. Significance of interactions between microplastics and POPs in the marine environment: A critical overview. TrAC Trends Anal. Chem. 2019, 111, 252–260. [Google Scholar] [CrossRef]
- Liu, F.; Liu, G.; Zhu, Z.; Wang, S.; Zhao, F. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere 2019, 214, 688–694. [Google Scholar] [CrossRef]
- Jones, J.I.; Vdovchenko, A.; Cooling, D.; Murphy, J.F.; Arnold, A.; Pretty, J.L.; Spencer, K.L.; Markus, A.A.; Vethaak, A.D.; Resmini, M. Systematic Analysis of the Relative Abundance of Polymers Occurring as Microplastics in Freshwaters and Estuaries. Int. J. Environ. Res. Public Health 2020, 17, 9304. [Google Scholar] [CrossRef]
- Bajt, O. From plastics to microplastics and organisms. FEBS Open Bio 2021, 11, 954–966. [Google Scholar] [CrossRef]
- Mowat, A.M. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 2003, 3, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of Various Microplastics in Human Stool. Ann. Intern. Med. 2019, 171, 453. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Y.S.; Tuan Anuar, S.; Azmi, A.A.; Wan Mohd Khalik, W.M.A.; Lehata, S.; Hamzah, S.R.; Ismail, D.; Ma, Z.F.; Dzulkarnaen, A.; Zakaria, Z.; et al. Detection of microplastics in human colectomy specimens. JGH Open 2021, 5, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Amato-Lourenço, L.F.; Carvalho-Oliveira, R.; Júnior, G.R.; dos Santos Galvão, L.; Ando, R.A.; Mauad, T. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 2021, 416, 126124. [Google Scholar] [CrossRef] [PubMed]
- Braun, T.; Ehrlich, L.; Henrich, W.; Koeppel, S.; Lomako, I.; Schwabl, P.; Liebmann, B. Detection of Microplastic in Human Placenta and Meconium in a Clinical Setting. Pharmaceutics 2021, 13, 921. [Google Scholar] [CrossRef]
- Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022, 107199. [Google Scholar] [CrossRef]
- Cai, J.; Zang, X.; Wu, Z.; Liu, J.; Wang, D. Translocation of transition metal oxide nanoparticles to breast milk and offspring: The necessity of bridging mother-offspring-integration toxicological assessments. Environ. Int. 2019, 133, 105153. [Google Scholar] [CrossRef]
- Yang, L.; Kuang, H.; Zhang, W.; Wei, H.; Xu, H. Quantum dots cause acute systemic toxicity in lactating rats and growth restriction of offspring. Nanoscale 2018, 10, 11564–11577. [Google Scholar] [CrossRef] [Green Version]
- Senathirajah, K.; Attwood, S.; Bhagwat, G.; Carbery, M.; Wilson, S.; Palanisami, T. Estimation of the mass of microplastics ingested—A pivotal first step towards human health risk assessment. J. Hazard. Mater. 2021, 404, 124004. [Google Scholar] [CrossRef]
Patient | Age | Milk Quantity (g) | N. of MPs | MP/g | Shape | Size | Colour | Polymer Matrix | Pigment |
---|---|---|---|---|---|---|---|---|---|
#1 | 28 | 8.44 | 2 | 0.24 | irregular fragment | ~10 µm | orange | nitrocellulose | |
irregular fragment | ~6 µm | orange | polyethylene | ||||||
#2 | 32 | 4.92 | 1 | 0.20 | irregular fragment | ~3 µm | blue | polyethylene | |
#3 | 32 | 5.83 | 1 | 0.17 | irregular fragment | ~6 µm | black | polyvinyl chloride | |
#4 | 38 | 5.09 | 2 | 0.39 | irregular fragment | ~2 µm | red | polyvinyl chloride | |
irregular fragment | ~3 µm | blue | polypropylene | ||||||
#5 | 36 | 7.08 | 2 | 0.28 | irregular fragment | ~6 µm | red | chlorinated polyethylene | |
sphere | ~5 µm | grey | polypropylene | ||||||
#6 | 40 | 1.95 | 4 | 2.05 | irregular fragment | ~5 µm | light blue | polyvinyl chloride | |
irregular fragment | ~1 µm | blue | Pigment Blue 29 (C.I. Constitution 77007) | ||||||
irregular fragment | ~10 µm | light blue | Pigment Green 7 (C.I. Constitution 74260) | ||||||
irregular fragment | ~10 µm | light blue | Pigment Green 7 (C.I. Constitution 74260) | ||||||
#7 | 38 | 3.49 | 5 | 1.43 | sphere | ~5 µm | brown | polyvinyl alcohol | |
irregular fragment | ~3 µm | light blue | Pigment Green 7 (C.I. Constitution 74260) | ||||||
irregular fragment | ~10 µm | brown/grey | nitrocellulose | ||||||
sphere | ~2 µm | blue | Pigment Blue 29 (C.I. Constitution 77007) | ||||||
irregular fragment | ~10 µm | light blue | polypropylene | ||||||
#8 | 36 | 4.21 | 2 | 0.47 | irregular fragment | ~2 µm | red | Pigment Red 101/102 (C.I. Constitution 77491) | |
irregular fragment | ~10 µm | red | Pigment Red 101/102 (C.I. Constitution 77491) | ||||||
#9 | 45 | 2.81 | 3 | 1.07 | irregular fragment | ~4 µm | red | Pigment Red 101/102 (C.I. Constitution 77491) | |
irregular fragment | ~5 µm | yellow/orange | polyethylene | ||||||
irregular fragment | ~3 µm | light blue | polyvinyl chloride | ||||||
#10 | 34 | 5.58 | 2 | 0.36 | irregular fragment | ~6 µm | orange | polyethylene | |
irregular fragment | ~6 µm | blue | polypropylene | ||||||
#11 | 39 | 2.32 | 0 | 0 | |||||
#12 | 32 | 3.55 | 2 | 0.56 | irregular fragment | ~2 µm | black | polyethylene | |
irregular fragment | ~10 µm | green | poly(ethylene-co-vinyl acetate) | Pigment Green 7 (C.I. Constitution 74260 | |||||
#13 | 41 | 2.76 | 1 | 0.36 | irregular fragment | ~12 µm | blue | polyethylene | |
#14 | 50 | 4.50 | 3 | 0.67 | irregular fragment | ~3 µm | brown | Pigment Yellow 43 / Brown 6 (C.I. Constitution 77492) | |
irregular fragment | ~3 µm | light blue | polyvinyl chloride | ||||||
sphere | ~4 µm | grey | polypropylene | ||||||
#15 | 33 | 5.99 | 2 | 0.33 | irregular fragment | ~5 µm | orange | polyethylene | |
irregular fragment | ~6 µm | red | polyvinyl chloride | ||||||
#16 | 37 | 4.65 | 2 | 0.43 | irregular fragment | ~10 µm | blue | polyethylene | |
irregular fragment | ~2 µm | transparent | polyethylene | ||||||
#17 | 32 | 1.64 | 2 | 1.22 | sphere | ~5 µm | transparent | polyethylene | |
irregular fragment | ~5 µm | brown | Pigment Red 101/102 (C.I. Constitution 77491) | ||||||
#18 | 41 | 3.10 | 1 | 0.32 | irregular fragment | ~8 µm | black | poly(ethyl methacrylate) | |
#19 | 38 | 6.06 | 2 | 0.33 | irregular fragment | ~8 µm | orange | nitrocellulose | |
irregular fragment | ~2 µm | blue/green | polypropylene | ||||||
#20 | 37 | 4.19 | 3 | 0.71 | irregular fragment | ~3 µm | magenta | polyvinyl chloride | |
irregular fragment | ~12 µm | light blue | polyvinyl chloride | ||||||
irregular fragment | ~12 µm | green | polyvinyl chloride | ||||||
#21 | 40 | 2.36 | 1 | 0.42 | irregular fragment | ~5 µm | blue | acrylonitrile butadiene styrene | |
#22 | 41 | 5.47 | 0 | 0 | |||||
#23 | 35 | 3.82 | 0 | 0 | |||||
#24 | 48 | 2.53 | 5 | 1.98 | irregular fragment | ~2 µm | orange | polystyrene | |
irregular fragment | ~10 µm | yellow | polyethylene | ||||||
irregular fragment | ~12 µm | transparent | polyethylene | ||||||
irregular fragment | ~4 µm | light blue | polypropylene | ||||||
irregular fragment | ~5 µm | brown | polyester | ||||||
#25 | 39 | 7.51 | 1 | 0.13 | irregular fragment | ~10 µm | blue | polyamide | |
#26 | 37 | 5.65 | 2 | 0.35 | irregular fragment | ~6 µm | white/transparent | polyethylene | |
irregular fragment | ~4 µm | light blue | polypropylene | ||||||
#27 | 31 | 3.06 | 1 | 0.33 | irregular fragment | ~5 µm | brown | polycarbonate | |
#28 | 35 | 3.54 | 0 | 0 | |||||
#29 | 35 | 2.68 | 1 | 0.37 | irregular fragment | ~2 µm | light blue | polyethylene | |
#30 | 47 | 1.84 | 5 | 2.72 | irregular fragment | ~7 µm | white/transparent | polyethylene | |
irregular fragment | ~8 µm | yellow/brown | polyethylene | ||||||
irregular fragment | ~2 µm | white | polyethylene | ||||||
irregular fragment | ~4 µm | orange | high-density polyethylene | ||||||
irregular fragment | ~4 µm | blue | polyvinyl chloride | ||||||
#31 | 49 | 3.85 | 0 | 0 | |||||
#32 | 42 | 4.21 | 0 | 0 | |||||
#33 | 45 | 5.10 | 0 | 0 | |||||
#34 | 42 | 1.54 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragusa, A.; Notarstefano, V.; Svelato, A.; Belloni, A.; Gioacchini, G.; Blondeel, C.; Zucchelli, E.; De Luca, C.; D’Avino, S.; Gulotta, A.; et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers 2022, 14, 2700. https://doi.org/10.3390/polym14132700
Ragusa A, Notarstefano V, Svelato A, Belloni A, Gioacchini G, Blondeel C, Zucchelli E, De Luca C, D’Avino S, Gulotta A, et al. Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers. 2022; 14(13):2700. https://doi.org/10.3390/polym14132700
Chicago/Turabian StyleRagusa, Antonio, Valentina Notarstefano, Alessandro Svelato, Alessia Belloni, Giorgia Gioacchini, Christine Blondeel, Emma Zucchelli, Caterina De Luca, Sara D’Avino, Alessandra Gulotta, and et al. 2022. "Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk" Polymers 14, no. 13: 2700. https://doi.org/10.3390/polym14132700
APA StyleRagusa, A., Notarstefano, V., Svelato, A., Belloni, A., Gioacchini, G., Blondeel, C., Zucchelli, E., De Luca, C., D’Avino, S., Gulotta, A., Carnevali, O., & Giorgini, E. (2022). Raman Microspectroscopy Detection and Characterisation of Microplastics in Human Breastmilk. Polymers, 14(13), 2700. https://doi.org/10.3390/polym14132700