Nonlinear Conductivity and Space Charge Characteristics of SiC/Silicone Rubber Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Microstructure Characterization
2.3. Mechanical Tensile Test
2.4. Electric Conductivity
2.5. Space Charge Distribution
2.6. Isothermal Surface Potential Decay
2.7. Finite-Element Electric Field Simulation
3. Results and Discussion
3.1. Microstructure and Mechanical Property
3.2. Electrical Conductance
3.3. Space Charge Characteristics
3.4. Charge Trap Characteristics
3.5. Electric Field Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazzanti, G. Life and Reliability Models for High Voltage DC Extruded Cables. IEEE Electr. Insul. Mag. 2017, 33, 42–52. [Google Scholar] [CrossRef]
- Li, J.; Gao, Y.; Song, Z. On the Crosslinking Temperature Dependence of Charge Transport Behavior in XLPE Film Deduced from Surface Potential Decay Measurements. J. Electrost. 2021, 109, 103539. [Google Scholar] [CrossRef]
- Li, Z.; Su, J. Inhibition Effect of Graphene on Space Charge Injection and Accumulation in Low-Density Polyethylene. Nanomaterials 2018, 8, 956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morshuis, P.; Cavallini, A.; Fabiani, D. Stress Conditions in HVDC Equipmentand Routes to in Service Failure. IEEE Trans. Dielectr. Electr. Insul. 2015, 22, 81–91. [Google Scholar] [CrossRef]
- Khalil, M.S. International Research and Development Trends and Problems of HVDC Cables with Polymeric Insulation. IEEE Electr. Insul. Mag. 2002, 13, 35–47. [Google Scholar] [CrossRef]
- Lan, L.; Wu, J.D.; Wang, Y.N.; Yin, Y. Space Charge Property at The Interface in Low Density Polyethylene/ethylene Propylene Rubber double-layered Insulation. Proc. Chin. Soc. Electr. Eng. 2015, 35, 1266–1272. [Google Scholar]
- Tavernier, K.; Varlow, B.R.; Auckland, D.W. Improvement in Electrical Insulators by Non-Linear Fillers. IEE Proc.-Sci. Meas. Technol. 1999, 146, 88–94. [Google Scholar] [CrossRef]
- Donzel, L.; Greuter, F.; Christen, T. Nonlinear Resistive Electric Field Grading Part 2: Materials and Applications. IEEE Electr. Insul. Mag. 2011, 27, 18–29. [Google Scholar] [CrossRef]
- Wang, X.; Nelson, J.K.; Schadler, L.S. Mechanisms Leading to Nonlinear Electrical Response of a Nano p-SiC/Silicone Rubber Composite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1687–1696. [Google Scholar] [CrossRef]
- Hu, J.; Zhao, X.L.; Yang, X. Improving the Electric Field Strength Distribution of Cable Terminals by Stress Cone of Nonlinear Conductivity Material. High Volt. Eng. 2017, 43, 398–404. [Google Scholar]
- Chi, Q.G.; Li, Z.; Zhang, T.D. Nonlinear conductivity of copper calcium titanate nanofibers/liquid silicone rubber composite. Acta Mater. Compos. Sin. 2019, 36, 2248–2258. [Google Scholar]
- Li, J.; Du, B.; Kong, X.X. Nonlinear Conductivity and Interface Charge Behaviors between LDPE and EPDM/SiC Composite for HVDC Cable Accessory. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1566–1573. [Google Scholar] [CrossRef]
- Xue, J.Y.; Chen, J.H.; Dong, J.H. The regulation mechanism of SiC/epoxy coatings on surface charge behavior and flashover performance of epoxy/alumina spacers. J. Phys. D Appl. Phys. 2019, 52, 405502. [Google Scholar] [CrossRef]
- Du, B.; Li, X.; Jiang, J. Surface Charge Accumulation and Decay on Direct-fluorinated Oil-impregnated Paper. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 3094–3101. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z.Q. Charge Trapping and Detrapping in Polymeric Materials. J. Appl. Phys. 2009, 106, 123707. [Google Scholar] [CrossRef] [Green Version]
- Li, C.M.; Wu, G.F.; Li, C.Y. Effect of the defects inside XLPE insulated HVDC cable termination on the electric field distribution. Electr. Mach. Control 2018, 12, 63–67. [Google Scholar]
- Strümpler, R.; Glatz-Reichenbach, J. Conducting polymer composites. J. Electroceram. 1999, 3, 329–346. [Google Scholar] [CrossRef]
- Zhao, H.; Xi, C.; Zhao, X.; Sun, W.F. Elevated Temperature Space Charge Characteristics and Trapping Mechanism of Cross-Linked Polyethylene Modified by UV-Initiated Grafting MAH. Molecules 2020, 25, 3973. [Google Scholar] [CrossRef]
- Xh, A.; Ir, B.; Ps, C. PP/PP-HI/Silica Nanocomposites for HVDC Cable Insulation: Are Silica Clusters Beneficial for Space Charge Accumulation. Polym. Test. 2021, 98, 107186. [Google Scholar]
- Zhou, Y.; Wang, W.; Guo, T. Space Charge Accumulation Characteristics in HVDC Cable under Temperature Gradient. Energies 2020, 13, 5571. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozako, M.; Fuse, N. Proposal Multi-Core Model for Polymer Nanocomposite Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Tanaka, T.; Montanari, G.C.; Mulhaupt, R. Polymer Nanocomposites as Dielectrics and Electrical Insulation-perspectives for Processing Technologies, Material Characterization and Future Applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763–784. [Google Scholar] [CrossRef]
Materials | Density/(g·cm−3) | Relative Permittivity | Coefficient of Thermal Conductivity/(W·m−1·K−1) |
---|---|---|---|
XLPE | 910 | 2.27 | 1640 |
Inner Shield | 950 | 100 | 2500 |
Materials | 30 °C | 70 °C | ||
---|---|---|---|---|
Eth (kV/mm) | β1, β2 | Eth /(kV/mm) | β1, β2 | |
pure LSR | - | - | - | - |
5.0 wt% | 21.1 | 1.14, 2.31 | 10.1 | 1.10, 2.26 |
10.0 wt% | 20.4 | 1.37, 3.31 | 14.9 | 1.23, 2.85 |
20.0 wt% | 14.8 | 1.37, 3.56 | 10.5 | 1.29, 2.99 |
Materials | 30 °C | 70 °C |
---|---|---|
5.0 wt% SiC/LSR | 4.0 | 3.5 |
10.0 wt% SiC/LSR | 5.0 | 4.9 |
20.0 wt% SiC/LSR | 5.4 | 5.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, M.-Z.; Li, Z.-Y.; Sun, W.-F. Nonlinear Conductivity and Space Charge Characteristics of SiC/Silicone Rubber Nanocomposites. Polymers 2022, 14, 2726. https://doi.org/10.3390/polym14132726
Gao M-Z, Li Z-Y, Sun W-F. Nonlinear Conductivity and Space Charge Characteristics of SiC/Silicone Rubber Nanocomposites. Polymers. 2022; 14(13):2726. https://doi.org/10.3390/polym14132726
Chicago/Turabian StyleGao, Ming-Ze, Zhong-Yuan Li, and Wei-Feng Sun. 2022. "Nonlinear Conductivity and Space Charge Characteristics of SiC/Silicone Rubber Nanocomposites" Polymers 14, no. 13: 2726. https://doi.org/10.3390/polym14132726
APA StyleGao, M. -Z., Li, Z. -Y., & Sun, W. -F. (2022). Nonlinear Conductivity and Space Charge Characteristics of SiC/Silicone Rubber Nanocomposites. Polymers, 14(13), 2726. https://doi.org/10.3390/polym14132726