Fe-Immobilised Catechol-Based Hypercrosslinked Polymer as Heterogeneous Fenton Catalyst for Degradation of Methylene Blue in Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Characterisation Apparatus
2.3. Preparation of Fe-Immobilised HCP (Catechol-HCP-Fe)
2.4. Fe-Loading Determination in Catechol-HCP-Fe
2.5. Dye Degradation Experiments
3. Results and Discussion
3.1. Preparation and Characterisation of Fe-Immobilised HCP (Catechol-HCP-Fe)
3.1.1. Preparation of Fe-Immobilised HCP (Catechol-HCP-Fe)
3.1.2. Fourier Transform Infrared (FT-IR) Spectroscopy
3.1.3. Elemental Analysis
3.1.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) Analysis
3.1.5. Thermogravimetric Analysis (TGA)
3.1.6. Surface Area Analysis
3.2. Catalytic Property of Catechol-HCP-Fe
3.3. Effect of Parameters on MB Degradation
3.3.1. Effect of H2O2 Concentration
3.3.2. Effect of Polymer Dose
3.3.3. Effect of Initial Dye Concentration
3.3.4. Effect of Initial pH of Dye Solution and Reaction Temperature
3.4. Reusability of Catechol-HCP-Fe for Dye Degradation
3.5. Mechanistic Study of Dye Degradation Process
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Khan, S.; Malik, A. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye. Environ. Sci. Pollut. Res. 2018, 25, 4446–4458. [Google Scholar] [CrossRef] [PubMed]
- Shanker, U.; Rani, M.; Jassal, V. Degradation of hazardous organic dyes in water by nanomaterials. Environ. Chem. Lett. 2017, 15, 623–642. [Google Scholar] [CrossRef]
- Jiang, D.; Deng, R.; Li, G.; Zheng, G.; Guo, H. Constructing an ultra-adsorbent based on the porous organic molecules of noria for the highly efficient adsorption of cationic dyes. RSC Adv. 2020, 10, 6185–6191. [Google Scholar] [CrossRef] [Green Version]
- Su, P.; Zhang, X.; Xu, Z.; Zhang, G.; Shen, C.; Meng, Q. Amino-functionalized hypercrosslinked polymers for highly selective anionic dye removal and CO2/N2 separation. New J. Chem. 2019, 43, 17267–17274. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef]
- Motejadded Emrooz, H.B.; Maleki, M.; Rashidi, A.; Shokouhimehr, M. Adsorption mechanism of a cationic dye on a biomass-derived micro- and mesoporous carbon: Structural, kinetic, and equilibrium insight. Biomass Convers. Biorefin. 2020, 11, 943–954. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Z.; Li, A.; Yang, H. Evaluation of starch-based flocculants for the flocculation of dissolved organic matter from textile dyeing secondary wastewater. Chemosphere 2017, 174, 200–207. [Google Scholar] [CrossRef]
- Zhao, C.; Zheng, H.; Sun, Y.; Zhang, S.; Liang, J.; Liu, Y.; An, Y. Evaluation of a novel dextran-based flocculant on treatment of dye wastewater: Effect of kaolin particles. Sci. Total Environ. 2018, 640–641, 243–254. [Google Scholar] [CrossRef]
- Li, H.; Liu, S.; Zhao, J.; Feng, N. Removal of reactive dyes from wastewater assisted with kaolin clay by magnesium hydroxide coagulation process. Colloids Surf. A Physicochem. Eng. Asp. 2016, 494, 222–227. [Google Scholar] [CrossRef]
- Lau, Y.-Y.; Wong, Y.-S.; Teng, T.-T.; Morad, N.; Rafatullah, M.; Ong, S.-A. Coagulation-flocculation of azo dye Acid Orange 7 with green refined laterite soil. Chem. Eng. J. 2014, 246, 383–390. [Google Scholar] [CrossRef]
- Sadri Moghaddam, S.; Alavi Moghaddam, M.R.; Arami, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J. Hazard. Mater. 2010, 175, 651–657. [Google Scholar] [CrossRef]
- Kasperchik, V.P.; Yaskevich, A.L.; Bil’dyukevich, A.V. Wastewater treatment for removal of dyes by coagulation and membrane processes. Pet. Chem. 2012, 52, 545–556. [Google Scholar] [CrossRef]
- Abid, M.F.; Zablouk, M.A.; Abid-Alameer, A.M. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. Iran. J. Environ. Health Sci. Eng. 2012, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Rashidi, H.R.; Sulaiman, N.M.N.; Hashim, N.A.; Hassan, C.R.C.; Ramli, M.R. Synthetic reactive dye wastewater treatment by using nano-membrane filtration. Desalin. Water Treat. 2015, 55, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.-J.; Ismail, A.F. Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—A review. Desalination 2009, 245, 321–348. [Google Scholar] [CrossRef]
- Lin, J.; Ye, W.; Huang, J.; Ricard, B.; Baltaru, M.-C.; Greydanus, B.; Balta, S.; Shen, J.; Vlad, M.; Sotto, A.; et al. Toward Resource Recovery from Textile Wastewater: Dye Extraction, Water and Base/Acid Regeneration Using a Hybrid NF-BMED Process. ACS Sustain. Chem. Eng. 2015, 3, 1993–2001. [Google Scholar] [CrossRef]
- Hartmann, M.; Kullmann, S.; Keller, H. Wastewater treatment with heterogeneous Fenton-type catalysts based on porous materials. J. Mater. Chem. 2010, 20, 9002–9017. [Google Scholar] [CrossRef]
- Jain, B.; Singh, A.K.; Kim, H.; Lichtfouse, E.; Sharma, V.K. Treatment of organic pollutants by homogeneous and heterogeneous Fenton reaction processes. Environ. Chem. Lett. 2018, 16, 947–967. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Huang, X.; Xi, S.; Miao, S.; Ding, J.; Cai, W.; Liu, S.; Yang, X.; Yang, H.; Gao, J.; et al. Single Cobalt Atoms Anchored on Porous N-Doped Graphene with Dual Reaction Sites for Efficient Fenton-like Catalysis. J. Am. Chem. Soc. 2018, 140, 12469–12475. [Google Scholar] [CrossRef] [PubMed]
- Macías-Sánchez, J.; Hinojosa-Reyes, L.; Guzmán-Mar, J.L.; Peralta-Hernández, J.M.; Hernández-Ramírez, A. Performance of the photo-Fenton process in the degradation of a model azo dye mixture. Photochem. Photobiol. Sci. 2011, 10, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-R.; Li, H.-B.; Wang, W.-H.; Gu, J.-D. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere 2004, 57, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Tian, J.; Fang, Y.; Liu, T.; Zhang, X.; Xu, X.; Zhang, X. Visible-light-driven photo-Fenton degradation of organic pollutants by a novel porphyrin-based porous organic polymer at neutral pH. Chemosphere 2020, 243, 125334. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, X.; Shao, Z.; Shan, D.; Li, G.; Irini, A. Comparison of Fenton, UV-Fenton and nano-Fe3O4 catalyzed UV-Fenton in degradation of phloroglucinol under neutral and alkaline conditions: Role of complexation of Fe3+ with hydroxyl group in phloroglucinol. Chem. Eng. J. 2017, 313, 938–945. [Google Scholar] [CrossRef]
- Ali, A.S.; Khan, I.; Zhang, B.; Nomura, K.; Homonnay, Z.; Kuzmann, E.; Scrimshire, A.; Bingham, P.A.; Krehula, S.; Musić, S.; et al. Photo-Fenton degradation of methylene blue using hematite-enriched slag under visible light. J. Radioanal. Nucl. Chem. 2020, 325, 537–549. [Google Scholar] [CrossRef]
- Kusic, H.; Koprivanac, N.; Srsan, L. Azo dye degradation using Fenton type processes assisted by UV irradiation: A kinetic study. J. Photochem. Photobiol. A Chem. 2006, 181, 195–202. [Google Scholar] [CrossRef]
- Faheem, M.; Jiang, X.; Wang, L.; Shen, J. Synthesis of Cu2O–CuFe2O4 microparticles from Fenton sludge and its application in the Fenton process: The key role of Cu2O in the catalytic degradation of phenol. RSC Adv. 2018, 8, 5740–5748. [Google Scholar] [CrossRef] [Green Version]
- Dawson, R.; Cooper, A.I.; Adams, D.J. Nanoporous organic polymer networks. Prog. Polym. Sci. 2012, 37, 530–563. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef]
- Li, B.; Gong, R.; Wang, W.; Huang, X.; Zhang, W.; Li, H.; Hu, C.; Tan, B. A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker. Macromolecules 2011, 44, 2410–2414. [Google Scholar] [CrossRef]
- Wu, J.; Xu, F.; Li, S.; Ma, P.; Zhang, X.; Liu, Q.; Fu, R.; Wu, D. Porous Polymers as Multifunctional Material Platforms toward Task-Specific Applications. Adv. Mater. 2019, 31, 1802922. [Google Scholar] [CrossRef] [PubMed]
- Dawson, R.; Ratvijitvech, T.; Corker, M.; Laybourn, A.; Khimyak, Y.Z.; Cooper, A.I.; Adams, D.J. Microporous copolymers for increased gas selectivity. Polym. Chem. 2012, 3, 2034–2038. [Google Scholar] [CrossRef]
- Alahmed, A.H.; Briggs, M.E.; Cooper, A.I.; Adams, D.J. Post-synthetic fluorination of Scholl-coupled microporous polymers for increased CO2 uptake and selectivity. J. Mater. Chem. A 2019, 7, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Long, C.; Liu, P.; Li, Y.; Li, A.; Zhang, Q. Characterization of Hydrophobic Hypercrosslinked Polymer as an Adsorbent for Removal of Chlorinated Volatile Organic Compounds. Environ. Sci. Technol. 2011, 45, 4506–4512. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Zhang, D.-S.; Chen, Q.; Bu, X.-H. Microporous organic polymers for gas storage and separation applications. Phys. Chem. Chem. Phys. 2013, 15, 5430–5442. [Google Scholar] [CrossRef] [PubMed]
- Woodward, R.T.; Stevens, L.A.; Dawson, R.; Vijayaraghavan, M.; Hasell, T.; Silverwood, I.P.; Ewing, A.V.; Ratvijitvech, T.; Exley, J.D.; Chong, S.Y.; et al. Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. J. Am. Chem. Soc. 2014, 136, 9028–9035. [Google Scholar] [CrossRef]
- Wood, C.D.; Tan, B.; Trewin, A.; Niu, H.; Bradshaw, D.; Rosseinsky, M.J.; Khimyak, Y.Z.; Campbell, N.L.; Kirk, R.; Stöckel, E.; et al. Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks. Chem. Mater. 2007, 19, 2034–2048. [Google Scholar] [CrossRef]
- Wood, C.D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M.J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A.I. Microporous Organic Polymers for Methane Storage. Adv. Mater. 2008, 20, 1916–1921. [Google Scholar] [CrossRef]
- Errahali, M.; Gatti, G.; Tei, L.; Paul, G.; Rolla, G.A.; Canti, L.; Fraccarollo, A.; Cossi, M.; Comotti, A.; Sozzani, P.; et al. Microporous Hyper-Cross-Linked Aromatic Polymers Designed for Methane and Carbon Dioxide Adsorption. J. Phys. Chem. C 2014, 118, 28699–28710. [Google Scholar] [CrossRef]
- Shen, X.; Ma, S.; Xia, H.; Shi, Z.; Mu, Y.; Liu, X. Cationic porous organic polymers as an excellent platform for highly efficient removal of pollutants from water. J. Mater. Chem. A 2018, 6, 20653–20658. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Wang, J.-H.; Zhang, Y.-H.; Hu, T.-L. Hollow porous organic polymer: High-performance adsorption for organic dye in aqueous solution. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1329–1337. [Google Scholar] [CrossRef]
- Li, B.; Su, F.; Luo, H.-K.; Liang, L.; Tan, B. Hypercrosslinked microporous polymer networks for effective removal of toxic metal ions from water. Microporous Mesoporous Mater. 2011, 138, 207–214. [Google Scholar] [CrossRef]
- Rao, K.V.; Mohapatra, S.; Maji, T.K.; George, S.J. Guest-Responsive Reversible Swelling and Enhanced Fluorescence in a Super-Absorbent, Dynamic Microporous Polymer. Chem. Eur. J. 2012, 18, 4505–4509. [Google Scholar] [CrossRef] [PubMed]
- Ratvijitvech, T.; Na Pombejra, S. Antibacterial efficiency of microporous hypercrosslinked polymer conjugated with biosynthesized silver nanoparticles from Aspergillus niger. Mater. Today Commun. 2021, 28, 102617. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, K.; Tan, B.; Gu, Y. Hollow Hyper-Cross-Linked Nanospheres with Acid and Base Sites as Efficient and Water-Stable Catalysts for One-Pot Tandem Reactions. ACS Catal. 2017, 7, 3693–3702. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Chen, G.; Li, D.; Zhou, Y.; Yang, X.; Wang, J. Hypercrosslinked organic polymer based carbonaceous catalytic materials: Sulfonic acid functionality and nano-confinement effect. Appl. Catal. B Environ. 2015, 176–177, 718–730. [Google Scholar] [CrossRef]
- Feng, L.-J.; Wang, M.; Sun, Z.-Y.; Hu, Y.; Deng, Z.-T. Hypercrosslinked porous polyporphyrin by metal-free protocol: Characterization, uptake performance, and heterogeneous catalysis. Des. Monomers Polym. 2017, 20, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Liu, Y.; Liu, J.; Fu, X.; Luo, Y.; Lyu, Y. Hypercrosslinked conjugated microporous polymers for carbon capture and energy storage. New J. Chem. 2017, 41, 3915–3919. [Google Scholar] [CrossRef]
- Tan, L.; Li, B.; Yang, X.; Wang, W.; Tan, B. Knitting hypercrosslinked conjugated microporous polymers with external crosslinker. Polymer 2015, 70, 336–342. [Google Scholar] [CrossRef]
- Li, B.; Guan, Z.; Yang, X.; Wang, W.D.; Wang, W.; Hussain, I.; Song, K.; Tan, B.; Li, T. Multifunctional microporous organic polymers. J. Mater. Chem. A 2014, 2, 11930–11939. [Google Scholar] [CrossRef]
- Yang, Y.; Lai, Z. Ferrocene-based porous organic polymer for photodegradation of methylene blue and high iodine capture. Microporous Mesoporous Mater. 2021, 316, 110929. [Google Scholar] [CrossRef]
- Hegazi, H.A. Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents. HBRC J. 2013, 9, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Ratvijitvech, T. Bio-inspired Catechol-based Hypercrosslinked Polymer for Iron (Fe) Removal from Water. J. Polym. Environ. 2020, 28, 2211–2218. [Google Scholar] [CrossRef]
- Lin, J.; Chen, S.; Xiao, H.; Zhang, J.; Lan, J.; Yan, B.; Zeng, H. Ultra-efficient and stable heterogeneous iron-based Fenton nanocatalysts for degrading organic dyes at neutral pH via a chelating effect under nanoconfinement. Chem. Commun. 2020, 56, 6571–6574. [Google Scholar] [CrossRef] [PubMed]
- Contreras, D.; Rodríguez, J.; Freer, J.; Schwederski, B.; Kaim, W. Enhanced hydroxyl radical production by dihydroxybenzene-driven Fenton reactions: Implications for wood biodegradation. JBIC J. Biol. Inorg. Chem. 2007, 12, 1055–1061. [Google Scholar] [CrossRef] [PubMed]
- Zárate-Guzmán, A.I.; González-Gutiérrez, L.V.; Godínez, L.A.; Medel-Reyes, A.; Carrasco-Marín, F.; Romero-Cano, L.A. Towards understanding of heterogeneous Fenton reaction using carbon-Fe catalysts coupled to in-situ H2O2 electro-generation as clean technology for wastewater treatment. Chemosphere 2019, 224, 698–706. [Google Scholar] [CrossRef]
- Mia, M.S.; Yan, B.; Zhu, X.; Xing, T.; Chen, G. Dopamine Grafted Iron-Loaded Waste Silk for Fenton-like Removal of Toxic Water Pollutants. Polymers 2019, 11, 2037. [Google Scholar] [CrossRef] [Green Version]
- Ratvijitvech, T.; Dawson, R.; Laybourn, A.; Khimyak, Y.Z.; Adams, D.J.; Cooper, A.I. Post-synthetic modification of conjugated microporous polymers. Polymer 2014, 55, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.; Main, M.J.; Cooper, N.J.; Briggs, M.E.; Cooper, A.I.; Adams, D.J. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 2017, 8, 1914–1922. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Qian, J.; Yu, A.; Pan, B. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proc. Natl. Acad. Sci. USA 2019, 116, 6659–6664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Qiang, Z.; Pulgarin, C.; Kiwi, J. Accelerated methylene blue (MB) degradation by Fenton reagent exposed to UV or VUV/UV light in an innovative micro photo-reactor. Appl. Catal. B Environ. 2016, 187, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Rivera, F.L.; Recio, F.J.; Palomares, F.J.; Sánchez-Marcos, J.; Menéndez, N.; Mazarío, E.; Herrasti, P. Fenton-like degradation enhancement of methylene blue dye with magnetic heating induction. J. Electroanal. Chem. 2020, 879, 114773. [Google Scholar] [CrossRef]
- Pariente, M.I.; Martínez, F.; Melero, J.A.; Botas, J.Á.; Velegraki, T.; Xekoukoulotakis, N.P.; Mantzavinos, D. Heterogeneous photo-Fenton oxidation of benzoic acid in water: Effect of operating conditions, reaction by-products and coupling with biological treatment. Appl. Catal. B Environ. 2008, 85, 24–32. [Google Scholar] [CrossRef]
- Ren, B.; Xu, Y.; Zhang, C.; Zhang, L.; Zhao, J.; Liu, Z. Degradation of methylene blue by a heterogeneous Fenton reaction using an octahedron-like, high-graphitization, carbon-doped Fe2O3 catalyst. J. Taiwan Inst. Chem. Eng. 2019, 97, 170–177. [Google Scholar] [CrossRef]
- Yang, X.; Chen, W.; Huang, J.; Zhou, Y.; Zhu, Y.; Li, C. Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system. Sci. Rep. 2015, 5, 10632. [Google Scholar] [CrossRef]
- Du, J.-J.; Yuan, Y.-P.; Sun, J.-X.; Peng, F.-M.; Jiang, X.; Qiu, L.-G.; Xie, A.-J.; Shen, Y.-H.; Zhu, J.-F. New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J. Hazard. Mater. 2011, 190, 945–951. [Google Scholar] [CrossRef]
- Gao, J.; Miao, J.; Li, P.-Z.; Teng, W.Y.; Yang, L.; Zhao, Y.; Liu, B.; Zhang, Q. A p-type Ti(iv)-based metal–organic framework with visible-light photo-response. Chem. Commun. 2014, 50, 3786–3788. [Google Scholar] [CrossRef]
- Beker, S.A.; Khudur, L.S.; Cole, I.; Ball, A.S. Catalytic degradation of methylene blue using iron and nitrogen-containing carbon dots as Fenton-like catalysts. New J. Chem. 2022, 46, 263–275. [Google Scholar] [CrossRef]
- Xu, N.; Ren, M. Iron Species-Supporting Hydrophobic and Nonswellable Polytetrafluoroethylene/Poly(acrylic acid-co-hydroxyethyl methacrylate) Composite Fiber and Its Stable Catalytic Activity for Methylene Blue Oxidative Decolorization. Polymers 2021, 13, 1570. [Google Scholar] [CrossRef]
- Hong, P.; Wu, Z.; Yang, D.; Zhang, K.; He, J.; Li, Y.; Xie, C.; Yang, W.; Yang, Y.; Kong, L.; et al. Efficient generation of singlet oxygen (1O2) by hollow amorphous Co/C composites for selective degradation of oxytetracycline via Fenton-like process. Chem. Eng. J. 2021, 421, 129594. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Singlet-Oxygen Generation in Alkaline Periodate Solution. Environ. Sci. Technol. 2015, 49, 14392–14400. [Google Scholar] [CrossRef] [PubMed]
Polymer | % Carbon | % Hydrogen |
---|---|---|
Catechol-HCP-w | 62.68 ± 0.01 | 3.56 ± 0.12 |
(Theoretical) | (71.64) | (4.51) |
Catechol-HCP-Fe | 58.83 ± 0.29 | 3.44 ± 0.11 |
(Theoretical) 1 | (69.85) | (4.40) |
Kinetic Model | Rate Constant (k) | Rate Constant Unit | R2 |
---|---|---|---|
Zero-order | 2.3175 | ppm/min | 0.9936 |
First-order | 0.0569 | min−1 | 0.9125 |
Second-order | 0.0019 | ppm−1min−1 | 0.8000 |
Material | Dose (g/L) | [MB] (ppm) | [H2O2] (M) | Efficiency (%) | Time (min) | pH | Reference |
---|---|---|---|---|---|---|---|
FeCl2·4H2O | 0.08 | 70 | 0.03 | 99 | 120 | 7 | [24] |
FeCl3·6H2O | 0.08 | 70 | 0.03 | 99 | 120 | 7 | [24] |
Fe2O3 | 0.08 | 70 | 0.03 | ~30 | 120 | 7 | [24] |
Fe3O4 | 0.08 | 70 | 0.03 | ~25 | 120 | 7 | [24] |
FePPOP-1 | 0.08 | 70 | 0.03 | 99 | 80 | 7 | [24] |
FePPOP-1 | 0.08 | 100 | 0.03 | 99 | >120 | 7 | [24] |
FcTz-POP | 0.2 | 8 | 1 | 99 | 20 | 7 | [52] |
wSF-DA/Fe | 0.1 | 20 | 1 | 98 * | 10–40 * | 7 | [58] |
Fe2O3@FCNT-H | 0.015 | 3 | 0.05 | 99 | 60 | 5 | [61] |
M-NPs | 2 | 100 | 0.56 | ~100 | 90 | 3.5 | [63] |
C-Fe2O3-2 | 0.5 | 50 | 0.0075 | 96 | 420 | - | [65] |
Fe3O4@rGO@TiO2 | 1.5 | 10 | 0.176 | 99 | 120 | 7 | [66] |
MIL-53(Fe) | 0.01 | 128 | 10−5 | 20 | 20 | 7 | [67] |
NTU-9 (Ti(IV)-MOF) | 0.5 | 32 | ~0.25 | 99 | 20–40 | 7 | [68] |
Fe, N-CDs | 0.5 | 20 | 0.147 | 97 * | 60 * | 8 | [69] |
Catechol-HCP-Fe | 1 | 10 | 0.5 | 99 | 21 | 6 | This work |
Catechol-HCP-Fe | 1 | 100 | 0.5 | 99 | 51 | 6 | This work |
Catechol-HCP-Fe | 2 | 100 | 2 | 99 | 23 | 6 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratvijitvech, T. Fe-Immobilised Catechol-Based Hypercrosslinked Polymer as Heterogeneous Fenton Catalyst for Degradation of Methylene Blue in Water. Polymers 2022, 14, 2749. https://doi.org/10.3390/polym14132749
Ratvijitvech T. Fe-Immobilised Catechol-Based Hypercrosslinked Polymer as Heterogeneous Fenton Catalyst for Degradation of Methylene Blue in Water. Polymers. 2022; 14(13):2749. https://doi.org/10.3390/polym14132749
Chicago/Turabian StyleRatvijitvech, Thanchanok. 2022. "Fe-Immobilised Catechol-Based Hypercrosslinked Polymer as Heterogeneous Fenton Catalyst for Degradation of Methylene Blue in Water" Polymers 14, no. 13: 2749. https://doi.org/10.3390/polym14132749
APA StyleRatvijitvech, T. (2022). Fe-Immobilised Catechol-Based Hypercrosslinked Polymer as Heterogeneous Fenton Catalyst for Degradation of Methylene Blue in Water. Polymers, 14(13), 2749. https://doi.org/10.3390/polym14132749