Selective Removal of Iron, Lead, and Copper Metal Ions from Industrial Wastewater by a Novel Cross-Linked Carbazole-Piperazine Copolymer
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Equipment
2.2. Polymer Synthesis (MXM)
2.3. Adsorption Experiments
2.4. Molecular Simulation
3. Results and Discussion
3.1. MXM Copolymer Structure Characterization
3.2. MXM Copolymer Adsorption Properties
3.2.1. Effect of pH on the Adsorption Capacity of MXM
3.2.2. Effect of Initial Metal Ion Concentration on the Adsorption Capacity of MXM Copolymer
3.2.3. The Effect of Time on the Adsorption Capacity of MXM
3.3. Reusability of MXM
3.4. Molecular Simulation
3.5. Wastewater Sample Treatment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Begum, S.; Yuhana, N.Y.; Md Saleh, N.; Kamarudin, N.H.N.; Sulong, A.B. Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydr. Polym. 2021, 259, 117613. [Google Scholar] [CrossRef] [PubMed]
- Long, Z.; Huang, Y.; Zhang, W.; Shi, Z.; Yu, D.; Chen, Y.; Liu, C.; Wang, R. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ. Monit. Assess. 2021, 193, 20. [Google Scholar] [CrossRef] [PubMed]
- Hashim, K.S.; Shaw, A.; Al Khaddar, R.; Pedrola, M.O.; Phipps, D. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor. J. Environ. Manag. 2017, 189, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Liu, T.; Du, X.; Gao, X. Distribution of Iron on FCC Catalyst and Its Effect on Catalyst Performance. Front. Chem. 2021, 9, 640413. [Google Scholar] [CrossRef]
- Jiang, H.; Livi, K.J.; Kundu, S.; Cheng, W.-C. Characterization of iron contamination on equilibrium fluid catalytic cracking catalyst particles. J. Catal. 2018, 361, 126–134. [Google Scholar] [CrossRef]
- Taylor, A.A.; Tsuji, J.S.; Garry, M.R.; McArdle, M.E.; Goodfellow, W.L.; Adams, W.J.; Menzie, C.A. Critical Review of Exposure and Effects: Implications for Setting Regulatory Health Criteria for Ingested Copper. Environ. Manag. 2020, 65, 131–159. [Google Scholar] [CrossRef] [Green Version]
- Leal, P.P.; Hurd, C.L.; Sander, S.G.; Armstrong, E.; Fernández, P.A.; Suhrhoff, T.J.; Roleda, M.Y. Copper pollution exacerbates the effects of ocean acidification and warming on kelp microscopic early life stages. Sci. Rep. 2018, 8, 14763. [Google Scholar] [CrossRef]
- Wang, H.; Han, J.; Manica, R.; Qi, C.; Liu, Q. Effect of Cu(II) ions on millerite (β-NiS) flotation and surface properties in alkaline solutions. Miner. Eng. 2022, 180, 107443. [Google Scholar] [CrossRef]
- Green, R.E.; Pain, D.J. Risks to human health from ammunition-derived lead in Europe. Ambio 2019, 48, 954–968. [Google Scholar] [CrossRef] [Green Version]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Karim, S.; Ting, Y.-P. Recycling pathways for platinum group metals from spent automotive catalyst: A review on conventional approaches and bio-processes. Resour. Conserv. Recycl. 2021, 170, 105588. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Qasem, N.A.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. Npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of heavy metal ions by various low-cost adsorbents: A review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Ahmad, S.Z.N.; Wan Salleh, W.N.; Ismail, A.F.; Yusof, N.; Mohd Yusop, M.Z.; Aziz, F. Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere 2020, 248, 126008. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Giri, D.; Bankura, A.; Patra, S.K. Poly(benzodithieno-imidazole-alt-carbazole) based π-conjugated copolymers: Highly selective and sensitive turn-off fluorescent probes for Hg2+. Polymer 2018, 158, 338–353. [Google Scholar] [CrossRef]
- Rahnama Haratbar, P.; Ghaemi, A.; Nasiri, M. Potential of hypercrosslinked microporous polymer based on carbazole networks for Pb(II) ions removal from aqueous solutions. Environ. Sci. Pollut. Res. 2022, 29, 15040–15056. [Google Scholar] [CrossRef]
- Melhi, S. Novel carbazole-based porous organic frameworks (CzBPOF) for efficient removal of toxic Pb(II) from water: Synthesis, characterization, and adsorption studies. Environ. Technol. Innov. 2022, 25, 102172. [Google Scholar] [CrossRef]
- Lohse, M.S.; Bein, T. Covalent Organic Frameworks: Structures, Synthesis, and Applications. Adv. Funct. Mater. 2018, 28, 1705553. [Google Scholar] [CrossRef] [Green Version]
- Al-hamouz, O.C.S.O.; Saleh, T.A.; Garrison, T.F.; Fraim, M.L.; Habib, M.A.-A. Mercury Removal from Liquid Hydrocarbons by 1, 4-Benzenediamine Alkyldiamine Cross-Linked Polymersmercury Removal from Liquid Hydrocarbons by 1, 4-Benzenediamine Alkyldiamine Cross-Linked Polymers. U.S. Patent No. 11,236,274, 1 February 2022. [Google Scholar]
- Sun, H.; Jin, Z.; Yang, C.; Akkermans, R.L.; Robertson, S.H.; Spenley, N.A.; Miller, S.; Todd, S.M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.01. Wallingford CT. 2009, Gaussian Inc.: Wallingford, CT, USA, 2009.
- Martin, J.M.L.; Sundermann, A. Correlation consistent valence basis sets for use with the Stuttgart–Dresden–Bonn relativistic effective core potentials: The atoms Ga–Kr and In–Xe. J. Chem. Phys. 2001, 114, 3408–3420. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. ChemInform 2005, 36, 2999–3093. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Albakri, M.A.; Abdelnaby, M.M.; Saleh, T.A.; Al Hamouz, O.C.S. New series of benzene-1, 3, 5-triamine based cross-linked polyamines and polyamine/CNT composites for lead ion removal from aqueous solutions. Chem. Eng. J. 2018, 333, 76–84. [Google Scholar] [CrossRef]
- Chang, G.; Yang, L.; Yang, J.; Huang, Y.; Cao, K.; Ma, J.; Wang, D. A nitrogen-rich, azaindole-based microporous organic network: Synergistic effect of local dipole–π and dipole–quadrupole interactions on carbon dioxide uptake. Polym. Chem. 2016, 7, 5768–5772. [Google Scholar] [CrossRef]
- Dangsopon, A.; Poomsuk, N.; Siriwong, K.; Vilaivan, T.; Suparpprom, C. Synthesis and fluorescence properties of 3,6-diaminocarbazole-modified pyrrolidinyl peptide nucleic acid. RSC Adv. 2016, 6, 74314–74322. [Google Scholar] [CrossRef]
- Al Hamouz, O.C.S.; Estatie, M.K.; Morsy, M.A.; Saleh, T.A. Lead ion removal by novel highly cross-linked Mannich based polymers. J. Taiwan Inst. Chem. Eng. 2017, 70, 345–351. [Google Scholar] [CrossRef]
- Patil, S.A.; Scherf, U.; Kadashchuk, A. New Conjugated Ladder Polymer Containing Carbazole Moieties. Adv. Funct. Mater. 2003, 13, 609–614. [Google Scholar] [CrossRef]
- Muylaert, I.; Verberckmoes, A.; De Decker, J.; Van Der Voort, P. Ordered mesoporous phenolic resins: Highly versatile and ultra stable support materials. Adv. Colloid Interface Sci. 2012, 175, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.E.M.; Luyt, A.S.; Djoković, V. Thermal and dynamic mechanical properties of bio-based poly(furfuryl alcohol)/sisal whiskers nanocomposites. Polym. Bull. 2013, 70, 1265–1276. [Google Scholar] [CrossRef]
- Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. J. Hazard. Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef]
- Huang, Y.; Tang, J.; Gai, L.; Gong, Y.; Guan, H.; He, R.; Lyu, H. Different approaches for preparing a novel thiol-functionalized graphene oxide/Fe-Mn and its application for aqueous methylmercury removal. Chem. Eng. J. 2017, 319, 229–239. [Google Scholar] [CrossRef]
- Mohapatra, M.; Rout, K.; Mohapatra, B.K.; Anand, S. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent. J. Hazard. Mater. 2009, 166, 1506–1513. [Google Scholar] [CrossRef]
- Sahu, R.C.; Patel, R.; Ray, B.C. Adsorption of Zn(II) on activated red mud: Neutralized by CO2. Desalination 2011, 266, 93–97. [Google Scholar] [CrossRef]
- Lasheen, M.R.; Ammar, N.S.; Ibrahim, H.S. Adsorption/desorption of Cd(II), Cu(II) and Pb(II) using chemically modified orange peel: Equilibrium and kinetic studies. Solid State Sci. 2012, 14, 202–210. [Google Scholar] [CrossRef]
- Shen, S.; Guishen, L.; Pan, T.; He, J.; Guo, Z. Selective adsorption of Pt ions from chloride solutions obtained by leaching chlorinated spent automotive catalysts on ion exchange resin Diaion WA21J. J. Colloid Interface Sci. 2011, 364, 482–489. [Google Scholar] [CrossRef]
- Ozcan, A.; Ozcan, A.S.; Gok, O. Adsorption Kinetics and Isotherms of Anionic Dye of Reactive Blue 19 from Aqueous Solutions onto DTMA-Sepiolite; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2007; pp. 225–249. [Google Scholar]
- Wang, X.S.; Miao, H.H.; He, W.; Shen, H.L. Competitive adsorption of Pb(II), Cu(II), and Cd(II) ions on wheat-residue derived black carbon. J. Chem. Eng. Data 2011, 56, 444–449. [Google Scholar] [CrossRef]
- Saood Manzar, M.; Haladu, S.A.; Zubair, M.; Dalhat Mu’azu, N.; Qureshi, A.; Blaisi, N.I.; Garrison, T.F.; Charles, S. Al Hamouz, O. Synthesis and characterization of a series of cross-linked polyamines for removal of Erichrome Black T from aqueous solution. Chin. J. Chem. Eng. 2020, 32, 341–352. [Google Scholar] [CrossRef]
- Xiong, Y.Y.; Li, J.Q.; Gong, L.L.; Feng, X.F.; Meng, L.N.; Zhang, L.; Meng, P.P.; Luo, M.B.; Luo, F. Using MOF-74 for Hg2+ removal from ultra-low concentration aqueous solution. J. Solid State Chem. 2017, 246, 16–22. [Google Scholar] [CrossRef]
- Al-Yaari, M.; Saleh, T.A.; Saber, O. Removal of mercury from polluted water by a novel composite of polymer carbon nanofiber: Kinetic, isotherm, and thermodynamic studies. RSC Adv. 2021, 11, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Cegłowski, M.; Gierczyk, B.; Frankowski, M.; Popenda, Ł. A new low-cost polymeric adsorbents with polyamine chelating groups for efficient removal of heavy metal ions from water solutions. React. Funct. Polym. 2018, 131, 64–74. [Google Scholar] [CrossRef]
- Hu, L.; Yang, Z.; Cui, L.; Li, Y.; Ngo, H.H.; Wang, Y.; Wei, Q.; Ma, H.; Yan, L.; Du, B. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chem. Eng. J. 2016, 287, 545–556. [Google Scholar] [CrossRef]
- Samuel, M.S.; Shang, M.; Klimchuk, S.; Niu, J. Novel Regenerative Hybrid Composite Adsorbent with Improved Removal Capacity for Lead Ions in Water. Ind. Eng. Chem. Res. 2021, 60, 5124–5132. [Google Scholar] [CrossRef]
- Moshari, M.; Mehrehjedy, A.; Heidari-Golafzania, M.; Rabbani, M.; Farhadi, S. Adsorption study of lead ions onto sulfur/reduced graphene oxide composite. Chem. Data Collect. 2021, 31, 100627. [Google Scholar] [CrossRef]
- Ali, Z.; Ghanem, B.S.; Wang, Y.; Pacheco, F.; Ogieglo, W.; Vovusha, H.; Genduso, G.; Schwingenschlögl, U.; Han, Y.; Pinnau, I. Finely Tuned Submicroporous Thin-Film Molecular Sieve Membranes for Highly Efficient Fluid Separations. Adv. Mater. 2020, 32, 2001132. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1994. [Google Scholar]
- Abdelnaby, M.M.; Cordova, K.E.; Abdulazeez, I.; Alloush, A.M.; Al-Maythalony, B.A.; Mankour, Y.; Alhooshani, K.; Saleh, T.A.; Al Hamouz, O.C.S. Novel Porous Organic Polymer for the Concurrent and Selective Removal of Hydrogen Sulfide and Carbon Dioxide from Natural Gas Streams. ACS Appl. Mater. Interfaces 2020, 12, 47984–47992. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.; Xia, B.; Du, Q.; Zhang, P.; Wang, D.; Wang, Z.; Xia, Y. Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. J. Hazard. Mater. 2010, 177, 876–880. [Google Scholar] [CrossRef] [PubMed]
- Esmat, M.; Farghali, A.A.; Khedr, M.H.; El-Sherbiny, I.M. Alginate-based nanocomposites for efficient removal of heavy metal ions. Int. J. Biol. Macromol. 2017, 102, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Baba, Y.; Masaaki, K.; Kawano, Y. Synthesis of a chitosan derivative recognizing planar metal ion and its selective adsorption equilibria of copper(II) over iron(III)1. React. Funct. Polym. 1998, 36, 167–172. [Google Scholar] [CrossRef]
- Limsuwan, Y.; Rattanawongwiboon, T.; Lertsarawut, P.; Hemvichian, K.; Pongprayoon, T. Adsorption of Cu(II) ions from aqueous solution using PE/PP non-woven fabric grafted with poly(bis[2-(methacryloyloxy) ethyl] phosphate). J. Environ. Chem. Eng. 2021, 9, 106440. [Google Scholar] [CrossRef]
- Lin, X.; Shen, T.; Li, M.; Shaoyu, J.; Zhuang, W.; Li, M.; Xu, H.; Zhu, C.; Ying, H.; Ouyang, P. Synthesis, characterization, and utilization of poly-amino acid-functionalized lignin for efficient and selective removal of lead ion from aqueous solution. J. Clean. Prod. 2022, 347, 131219. [Google Scholar] [CrossRef]
- Mzinyane, N.N.; Ofomaja, A.E.; Naidoo, E.B. Synthesis of poly (hydroxamic acid) ligand for removal of Cu (II) and Fe (II) ions in a single component aqueous solution. S. Afr. J. Chem. Eng. 2021, 35, 137–152. [Google Scholar] [CrossRef]
- Ben Ali, M.; Wang, F.; Boukherroub, R.; Xia, M. High performance of phytic acid-functionalized spherical poly-phenylglycine particles for removal of heavy metal ions. Appl. Surf. Sci. 2020, 518, 146206. [Google Scholar] [CrossRef]
Metal Ion | Langmuir Isotherm Model | |||
---|---|---|---|---|
Qm | b | R2 | ||
Fe2+ | −3.45 | −0.164 | 0.8551 | |
Cu2+ | −1.32 | −0.323 | 0.9064 | |
Pb2+ | −19.9 | −0.029 | 0.0053 | |
Freundlich isotherm model | ||||
kf | 1/n | R2 | ||
Fe2+ | 0.380 | 1.07 | 0.9998 | |
Cu2+ | 1.17 | 0.304 | 0.9932 | |
Pb2+ | 2.41 | 1.64 | 0.8816 | |
DKR isotherm model | ||||
Qm | E | R2 | ||
Fe2+ | 1.02 | 0.999 | −0.707 | 0.6646 |
Cu2+ | 1.02 | 0.796 | −0.793 | 0.4708 |
Pb2+ | 1.25 | 2.44 | −0.452 | 0.9419 |
Metal Ion | PFO Kinetic Model | |||
---|---|---|---|---|
Qe exp | qe | k1 | R2 | |
Fe2+ | 0.407 | 0.087 | 4.345 | 0.9159 |
Cu2+ | 0.484 | 0.228 | 1.087 | 0.8632 |
Pb2+ | 0.420 | 0.046 | 3.078 | 0.6873 |
PSO Kinetic Model | ||||
Qe exp | qe | k2 | R2 | |
Fe2+ | 0.407 | 0.408 | 466.8 | 1.000 |
Cu2+ | 0.484 | 0.636 | 1.952 | 0.8343 |
Pb2+ | 0.420 | 0.445 | 7.165 | 0.9803 |
Metal Ions | Unspiked Wastewater Sample | ||
---|---|---|---|
Original sample | After Treatment | % Removal | |
Fe2+ | 0.061 | 0.00 | 100 |
Cu2+ | 0.003 | 0.002 | 33.3 |
Pb2+ | - | - | - |
Spiked Wastewater Sample | |||
Original sample | After Treatment | % Removal | |
Fe2+ | 0.454 | 0 | 100 |
Cu2+ | 0.485 | 0.219 | 54.8 |
Pb2+ | 0.376 | 0.015 | 96 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Anazi, M.; Abdulazeez, I.; Al Hamouz, O.C.S. Selective Removal of Iron, Lead, and Copper Metal Ions from Industrial Wastewater by a Novel Cross-Linked Carbazole-Piperazine Copolymer. Polymers 2022, 14, 2486. https://doi.org/10.3390/polym14122486
Al Anazi M, Abdulazeez I, Al Hamouz OCS. Selective Removal of Iron, Lead, and Copper Metal Ions from Industrial Wastewater by a Novel Cross-Linked Carbazole-Piperazine Copolymer. Polymers. 2022; 14(12):2486. https://doi.org/10.3390/polym14122486
Chicago/Turabian StyleAl Anazi, Majed, Ismail Abdulazeez, and Othman Charles S. Al Hamouz. 2022. "Selective Removal of Iron, Lead, and Copper Metal Ions from Industrial Wastewater by a Novel Cross-Linked Carbazole-Piperazine Copolymer" Polymers 14, no. 12: 2486. https://doi.org/10.3390/polym14122486
APA StyleAl Anazi, M., Abdulazeez, I., & Al Hamouz, O. C. S. (2022). Selective Removal of Iron, Lead, and Copper Metal Ions from Industrial Wastewater by a Novel Cross-Linked Carbazole-Piperazine Copolymer. Polymers, 14(12), 2486. https://doi.org/10.3390/polym14122486