A Cellulose-Type Carrier for Intimate Coupling Photocatalysis and Biodegradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Cellulose-Type Carriers
2.3. Photocatalytic Performance of Cellulose Support
2.4. System Construction of ICPB
2.5. Characterization
3. Results and discussion
3.1. Effect of Different Mass Fraction of Cellulose on Carrier Performance
3.2. Effect of Different Dosages of Absorbent Cotton on Carrier Performance
3.3. Effect of Different Dosages of Na2SO4 on Carrier Performance
3.4. Performance of TiO2-Coated Cellulose-Type Carrier
3.5. Analysis of Photocatalytic Properties of Cellulose Composite Carriers
3.6. Degradation of 1,2,4-TCB in ICPB
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Chen, C.; Zhou, D.; Xiong, H.; Zhou, Y.; Dong, S.; Rittmann, B.E. Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation. Chemosphere 2019, 237, 124491. [Google Scholar] [CrossRef] [PubMed]
- Marsolek, M.D.; Torres, C.I.; Hausner, M.; Rittmann, B.E. Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnol. Bioeng. 2008, 101, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Zou, D.; Zhou, D.; Li, T.; Dong, S.; Xu, Z.; Dong, S. Phenol removal and biofilm response in coupling of visible-light-driven photocatalysis and biodegradation: Effect of hydrothermal treatment temperature. Int. Biodeterior. Biodegrad. 2015, 104, 178–185. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Bai, Q.; Yan, N.; Xu, H.; Rittmann, B.E. Intimately coupling of photolysis accelerates nitrobenzene biodegradation, but sequential coupling slows biodegradation. J. Hazard. Mater. 2015, 287, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.; Dong, S.; Tian, X.; Xu, Z.; Ma, D.; Cui, B.; Rittmann, B.E. Role of self-assembly coated Er3+: YAlO3/TiO2 in intimate coupling of visible-light-responsive photocatalysis and biodegradation reactions. J. Hazard. Mater. 2016, 302, 386–394. [Google Scholar] [CrossRef]
- Kőrösi, L.; Bognár, B.; Bouderias, S.; Castelli, A.; Scarpellini, A.; Pasquale, L.; Prato, M. Highly-efficient photocatalytic generation of superoxide radicals by phase-pure rutile TiO2 nanoparticles for azo dye removal. Appl. Surf. Sci. 2019, 493, 719–728. [Google Scholar] [CrossRef]
- Deng, Y.; Tang, L.; Feng, C.; Zeng, G.; Wang, J.; Lu, Y.; Zhou, Y. Construction of plasmonic Ag and nitrogen-doped graphene quantum dots codecorated ultrathin graphitic carbon nitride nanosheet composites with enhanced photocatalytic activity: Full-spectrum response ability and mechanism insight. ACS Appl. Mater. Interfaces 2017, 9, 42816–42828. [Google Scholar] [CrossRef]
- Lin, S.; Su, G.; Zheng, M.; Jia, M.; Qi, C.; Li, W. The degradation of 1,2,4-trichlorobenzene using synthesized Co3O4 and the hypothesized mechanism. J. Hazard. Mater. 2011, 192, 1697–1704. [Google Scholar] [CrossRef]
- Xiong, H.; Zou, D.; Zhou, D.; Dong, S.; Wang, J.; Rittmann, B.E. Enhancing degradation and mineralization of tetracycline using intimately coupled photocatalysis and biodegradation (ICPB). Chem. Eng. J. 2017, 316, 7–14. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, L.; Xu, Z.; Xiong, H.; Zhou, D.; Huo, M. Contrasting roles of phenol and pyrocatechol on the degradation of 4-chlorophenol in a photocatalytic–biological reactor. Environ. Sci. Pollut. Res. 2017, 24, 24725–24731. [Google Scholar] [CrossRef]
- Zhou, D.; Dong, S.; Shi, J.; Cui, X.; Ki, D.; Torres, C.I.; Rittmann, B.E. Intimate coupling of an N-doped TiO2 photocatalyst and anode respiring bacteria for enhancing 4-chlorophenol degradation and current generation. Chem. Eng. J. 2017, 317, 882–889. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, S.; Zhao, T.; Liang, Y.; Liang, J.; Wang, S.; Chen, G. Degradation of methylene blue by intimate coupling photocatalysis and biodegradation with bagasse cellulose composite carrier. Cellulose 2020, 27, 3391–3404. [Google Scholar] [CrossRef]
- Yu, M.; Wang, J.; Tang, L.; Feng, C.; Liu, H.; Zhang, H.; Xie, Q. Intimate coupling of photocatalysis and biodegradation for wastewater treatment: Mechanisms, recent advances and environmental applications. Water Res. 2020, 175, 115673. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Zhou, W.; Du, F.; Qu, Y.; Tian, G.; Pan, K.; Fu, H. A floating macro/mesoporous crystalline anatase TiO2 ceramic with enhanced photocatalytic performance for recalcitrant wastewater degradation. Dalton Trans. 2014, 43, 790–798. [Google Scholar] [CrossRef]
- Wen, D.; Li, G.; Xing, R.; Park, S.; Rittmann, B.E. 2,4-DNT removal in intimately coupled photobiocatalysis: The roles of adsorption, photolysis, photocatalysis, and biotransformation. Appl. Microbiol. Biotechnol. 2012, 95, 263–272. [Google Scholar] [CrossRef]
- Li, G.; Park, S.; Kang, D.W.; Krajmalnik-Brown, R.; Rittmann, B.E. 2,4,5-Trichlorophenol degradation using a novel TiO2-coated biofilm carrier: Roles of adsorption, photocatalysis, and biodegradation. Environ. Sci. Technol. 2011, 45, 8359–8367. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xing, Z.; Zhang, H.; Li, Z.; Wu, X.; Zhang, X.; Zhou, W. High thermostable ordered mesoporous SiO2–TiO2 coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance. Appl. Catal. B Environ. 2016, 180, 521–529. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, Z.; Dong, S.; Huo, M.; Dong, S.; Tian, X.; Ma, D. Intimate coupling of photocatalysis and biodegradation for degrading phenol using different light types: Visible light vs UV light. Environ. Sci. Technol. 2015, 49, 7776–7783. [Google Scholar] [CrossRef]
- Kozhevnikova, N.S.; Gorbunova, T.I.; Vorokh, A.S.; Pervova, M.G.; Zapevalov, A.Y.; Saloutin, V.I.; Chupakhin, O.N. Nanocrystalline TiO2 doped by small amount of pre-synthesized colloidal CdS nanoparticles for photocatalytic degradation of 1,2,4-trichlorobenzene. Sustain. Chem. Pharm. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Carlson, A.R. Effects of lowered dissolved oxygen concentration on the toxicity of 1,2,4-trichlorobenzene to fathead minnows. Bull Environ. Contam. Toxicol. 1987, 38, 667–673. [Google Scholar] [CrossRef]
- Xiong, J.; Liang, Y.; Cheng, H.; Guo, S.; Jiao, C.; Zhu, H.; Chen, G. Preparation and photocatalytic properties of a bagasse cellulose-supported nano-TiO2 photocatalytic-coupled microbial carrier. Materials 2020, 13, 1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, T.; Cheng, H.; Liang, Y.; Xiong, J.; Zhu, H.; Wang, S.; Chen, G. Preparation of TiO2/sponge composite for photocatalytic degradation of 2,4,6-trichlorophenol. Water Air Soil Pollut. 2020, 231, 1–14. [Google Scholar] [CrossRef]
- Zhou, G.; Li, N.; Rene, E.R.; Liu, Q.; Dai, M.; Kong, Q. Chemical composition of extracellular polymeric substances and evolution of microbial community in activated sludge exposed to ibuprofen. J. Environ. Manag. 2019, 246, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.A.; Salleh WN, W.; Jaafar, J.; Ismail, A.F.; Abd Mutalib, M.; Sani NA, A.; Ong, C.S. Physicochemical characteristic of regenerated cellulose/N-doped TiO2 nanocomposite membrane fabricated from recycled newspaper with photocatalytic activity under UV and visible light irradiation. Chem. Eng. J. 2016, 284, 202–215. [Google Scholar] [CrossRef]
- Chin, S.F.; Jimmy, F.B.; Pang, S.C. Fabrication of Cellulose Aerogel from Sugarcane Bagasse as Drug Delivery Carriers. J. Phys. Sci. 2016, 27, 159–168. [Google Scholar] [CrossRef]
- Jiao, W. Preparation and Study of Cellulose foam Materials. Master’s Thesis, Wuhan Textile University, Wuhan, China, 2013. Available online: https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201302&filename=1013202982.nh (accessed on 17 May 2022).
- Mamat, H.; Kibir, B. Preparation of cellulose sponge from cellulose carbamate. Health Environ. Res. Online (HERO) 2012, 63, 1637–1642. [Google Scholar] [CrossRef]
- Xiong, J.; Yu, S.; Zhu, H.; Wang, S.; Chen, Y.; Liu, S. Dissolution and structure change of bagasse cellulose in zinc chloride solution. BioResources 2016, 11, 3813–3824. [Google Scholar] [CrossRef] [Green Version]
- Güzelçimen, F.; Tanören, B.; Çetinkaya, Ç.; Kaya, M.D.; Efkere, H.İ.; Özen, Y.; Özçelik, S. The effect of thickness on surface structure of rf sputtered TiO2 thin films by XPS, SEM/EDS, AFM and SAM. Vacuum 2020, 182, 109766. [Google Scholar] [CrossRef]
- Desai, N.D.; Khot, K.V.; Dongale, T.; Musselman, K.P.; Bhosale, P.N. Development of dye sensitized TiO2 thin films for efficient energy harvesting. J. Alloys Compd. 2019, 790, 1001–1013. [Google Scholar] [CrossRef]
- Kuhn, B.L.; Paveglio, G.C.; Silvestri, S.; Muller, E.I.; Enders, M.S.; Martins, M.A.; Frizzo, C.P. TiO2 nanoparticles coated with deep eutectic solvents: Characterization and effect on photodegradation of organic dyes. New J. Chem. 2019, 43, 1415–1423. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Cheng, H.; Feng, J.; Shi, Z.; Bai, D.; Li, L. Synthesis of highly water-dispersible N-doped anatase titania based on low temperature solvent-thermal method. Arab. J. Chem. 2018, 11, 871–879. [Google Scholar] [CrossRef]
- Ma, Y.; Xiong, H.; Zhao, Z.; Yu, Y.; Zhou, D.; Dong, S. Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor. Chem. Eng. J. 2018, 351, 967–975. [Google Scholar] [CrossRef]
- Xiong, H.; Dong, S.; Zhang, J.; Zhou, D.; Rittmann, B.E. Roles of an easily biodegradable co-substrate in enhancing tetracycline treatment in an intimately coupled photocatalytic-biological reactor. Water Res. 2018, 136, 75–83. [Google Scholar] [CrossRef] [PubMed]
Carrier | Catalyst | Pollutant | Pollutant Concentration | Light Source | Time | Efficiency |
---|---|---|---|---|---|---|
/ | CdS/TiO2 [19] | 1,2,4-TCB | 0.1 mol/L | UV | 7.5 h | 32.60% |
Ceramic porous carrier | TiO2 [15] | 2,4-DNT | 50 mg/L | UV | 60 h | 78% |
Sponge carrier | TiO2 [16] | 2,4,5- TCP | 50 μM | UV | 6 h | 94.2%~98.2% |
Sponge carrier | Ag/TiO2 [34] | TCH | 20 mg/L | visible | 8 h | 94% |
Cellulose carrier | TiO2 [12] | MB | 15 mg/L | UV | 6 h | 92.08% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Z.; Jiao, C.; Feng, Q.; Wang, J.; Xiong, J.; Chen, G.; Wang, S.; Zhu, H. A Cellulose-Type Carrier for Intimate Coupling Photocatalysis and Biodegradation. Polymers 2022, 14, 2998. https://doi.org/10.3390/polym14152998
Wan Z, Jiao C, Feng Q, Wang J, Xiong J, Chen G, Wang S, Zhu H. A Cellulose-Type Carrier for Intimate Coupling Photocatalysis and Biodegradation. Polymers. 2022; 14(15):2998. https://doi.org/10.3390/polym14152998
Chicago/Turabian StyleWan, Zhou, Chunlin Jiao, Qilin Feng, Jue Wang, Jianhua Xiong, Guoning Chen, Shuangfei Wang, and Hongxiang Zhu. 2022. "A Cellulose-Type Carrier for Intimate Coupling Photocatalysis and Biodegradation" Polymers 14, no. 15: 2998. https://doi.org/10.3390/polym14152998
APA StyleWan, Z., Jiao, C., Feng, Q., Wang, J., Xiong, J., Chen, G., Wang, S., & Zhu, H. (2022). A Cellulose-Type Carrier for Intimate Coupling Photocatalysis and Biodegradation. Polymers, 14(15), 2998. https://doi.org/10.3390/polym14152998