Metal Nanoparticles–Polymers Hybrid Materials I
Funding
Acknowledgments
Conflicts of Interest
References
- Gnecco, G.; Pammolli, F.; Tuncay, B. Welfare and research and development incentive effects of uniform and differential pricing schemes. Comput. Manag. Sci. 2022, 19, 229–268. [Google Scholar] [CrossRef]
- Piddock, L.J.V.; Paccaud, J.-P.; O’Brien, S.; Childs, M.; Malpani, R.; Balasegaram, M. A Nonprofit Drug Development Model Is Part of the Antimicrobial Resistance (AMR) Solution. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2022, 74, 1866–1871. [Google Scholar] [CrossRef] [PubMed]
- Linaza, R.V.; Genovezos, C.; Garner, T.; Panford-Quainoo, E.; Roberts, A.P. Global antimicrobial stewardship and the need for pharmaceutical system strengthening for antimicrobials within a One Health approach. Int. J. Pharm. Pract. 2022, 30, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Venditti, I.; Cartoni, A.; Fontana, L.; Testa, G.; Scaramuzzo, F.A.; Faccini, R.; Terracciano, C.M.; Camillocci, E.S.; Morganti, S.; Giordano, A.; et al. Y3+ embebbed in polymeric nanoparticles: Morphology, dimension and stability of composite colloidal system. Colloid Surf. A 2017, 532, 125–131. [Google Scholar] [CrossRef]
- Roberson, T.M. On the Social Shaping of Quantum Technologies: An Analysis of Emerging Expectations through Grant Proposals from 2002–2020. Minerva 2021, 59, 379–397. [Google Scholar] [CrossRef]
- Cesati, M.; Mancuso, R.; Betti, E.; Caccamo, M. A memory access detection methodology for accurate workload characterization. In Proceedings of the IEEE 21st International Conference on Embedded and Real-Time Computing Systems and Applications, Hong Kong, China, 19–21 August 2015; 7299854. pp. 141–148. [Google Scholar] [CrossRef]
- Sharma, R.; Ghosh, U.B. Cognitive Computing Driven Healthcare: A Precise Study Studies in Computational. Intelligence 2022, 1024, 259–279. [Google Scholar] [CrossRef]
- Gioiosa, R.; Mutlu, B.; Lee, S.; Vetter, J.; Picierro, G.; Cesati, M. The minos computing library: Efficient parallel programming for extremely heterogeneous systems GPGPU 2020. In Proceedings of the 2020 General Purpose Processing Using GPU 2020, San Diego, CA, USA, 23 February 2020; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Song, K.; An, K.; Yang, G.; Huang, J. Risk-return relationship in a complex adaptive system. PLoS ONE 2012, 7, e33588. [Google Scholar] [CrossRef]
- D’Amato, R.; Venditti, I.; Russo, M.V.; Falconieri, M. Growth Control and Long range Self-assembly of Polymethylmethacrylate Nanospheres. J. Appl. Polym. Sci. 2006, 102, 4493–4499. [Google Scholar] [CrossRef]
- Bonomo, M.; Naponiello, G.; Venditti, I.; Zardetto, V.; di Carlo, A.; Dini, D. Electrochemical and photoelectrochemical properties of screen-printed nickel oxide thin films obtained from precursor pastes with different compositions. J. Electrochem. Soc. 2017, 64, H137–H147. [Google Scholar] [CrossRef]
- Shi, Q.; Qin, Z.; Xu, H.; Li, G. Heterogeneous Cross-Coupling over Gold Nanoclusters. Nanomaterials 2019, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Naponiello, G.; Venditti, I.; Zardetto, V.; Saccone, D.; di Carlo, A.; Fratoddi, I.; Barolo, C.; Dini, D. Photoelectrochemical characterization of squaraine-sensitized nickel oxide cathodes deposited via screen-printing for p-type dye-sensitized solar cells. Appl. Surf. Sci. 2015, 56, 911–920. [Google Scholar] [CrossRef]
- Schutzmann, S.; Venditti, I.; Prosposito, P.; Casalboni, M.; Russo, M.V. High-energy angle resolved reflection spectroscopy on three-dimensional photonic crystals of self-organized polymeric nanospheres. Opt. Express 2008, 16, 897–907. [Google Scholar] [CrossRef]
- Sayson, L.V.A.; Regulacio, M.D. Rational Design and Synthesis of Ag−Cu2O Nanocomposites for SERS Detection, Catalysis, and Antibacterial Applications. ChemNanoMat 2022, 8, e202200052. [Google Scholar] [CrossRef]
- Qamar, S.A.; Qamar, M.; Basharat, A.; Bilal, M.; Cheng, H.; Iqbal, H.M. Alginate-based nano-adsorbent materials—Bioinspired solution to mitigate hazardous environmental pollutants. Chemosphere 2022, 288, 132618. [Google Scholar] [CrossRef]
- Fiorati, A.; Bellingeri, A.; Punta, C.; Corsi, I.; Venditti, I. Silver Nanoparticles for Water Pollution Monitoring and Treatments: Ecosafety Challenge and Cellulose-Based Hybrids Solution. Polymers 2020, 12, 1635. [Google Scholar] [CrossRef]
- Jacukowicz-Sobala, I.; Stanisławska, E.; Baszczuk, A.; Jasiorski, M.; Kociołek-Balawejder, E. Size-Controlled Transformation of Cu2O into Zero Valent Copper within the Matrix of Anion Exchangers via Green Chemical Reduction. Polymers 2020, 12, 2629. [Google Scholar] [CrossRef]
- di Salvo, G.M.; Robinson, A.R.; Aly, M.S.; Hoglund, E.R.; O’Malley, S.M.; Griepenburg, J.C. Polymersome Poration and Rupture Mediated by Plasmonic Nanoparticles in Response to Single-Pulse Irradiation. Polymers 2020, 12, 2381. [Google Scholar] [CrossRef]
- Lee, W.G.; Cho, Y.; Kang, S.W. Effect of Ionic Radius in Metal Nitrate on Pore Generation of Cellulose Acetate in Polymer Nanocomposite. Polymers 2020, 12, 981. [Google Scholar] [CrossRef] [Green Version]
- Ashammakhi, N.; GhavamiNejad, A.; Tutar, R.; Fricker, A.; Roy, I.; Chatzistavrou, X.; Apu, E.H.; Nguyen, K.-L.; Ahsan, T.; Pountos, I.; et al. Highlights on Advancing Frontiers in Tissue Engineering. Tissue Eng. Part B Rev. 2022, 28, 633–6641. [Google Scholar] [CrossRef]
- Fardjahromi, M.A.; Nazari, H.; Tafti, S.M.A.; Razmjou, A.; Mukhopadhyay, S.; Warkiani, M.E. Metal-organic framework-based nanomaterials for bone tissue engineering and wound healing. Mater. Today Chem. 2022, 23, 100670. [Google Scholar] [CrossRef]
- Radwan-Pragłowska, J.; Janus, Ł.; Piątkowski, M.; Bogdał, D.; Matysek, D. 3D Hierarchical, Nanostructured Chitosan/PLA/HA Scaffolds Doped with TiO2/Au/Pt NPs with Tunable Properties for Guided Bone Tissue Engineering. Polymers 2020, 12, 792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Zhang, C.; Ji, Y.; Tian, Y.; Wei, H.; Li, C.; Li, Z.; Zhu, T.; Sun, Q.; Man, B.; et al. 3D Ultrasensitive Polymers-Plasmonic Hybrid Flexible Platform for In-Situ Detection. Polymers 2020, 12, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roacho-Pérez, J.A.; Ruiz-Hernandez, F.G.; Chapa-Gonzalez, C.; Martínez-Rodríguez, H.G.; Flores-Urquizo, I.A.; Pedroza-Montoya, F.E.; Garza-Treviño, E.N.; Bautista-Villareal, M.; García-Casillas, P.E.; Sánchez-Domínguez, C.N. Magnetite Nanoparticles Coated with PEG 3350-Tween 80: In Vitro Characterization Using Primary Cell Cultures. Polymers 2020, 12, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, P.; Xu, P.; Zhang, L.; Xue, Y.; Zhao, X.; Li, Z.; Li, Q. Non-Chloride in Situ Preparation of Nano-Cuprous Oxide and Its Effect on Heat Resistance and Combustion Properties of Calcium Alginate. Polymers 2019, 11, 1760. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venditti, I. Metal Nanoparticles–Polymers Hybrid Materials I. Polymers 2022, 14, 3117. https://doi.org/10.3390/polym14153117
Venditti I. Metal Nanoparticles–Polymers Hybrid Materials I. Polymers. 2022; 14(15):3117. https://doi.org/10.3390/polym14153117
Chicago/Turabian StyleVenditti, Iole. 2022. "Metal Nanoparticles–Polymers Hybrid Materials I" Polymers 14, no. 15: 3117. https://doi.org/10.3390/polym14153117
APA StyleVenditti, I. (2022). Metal Nanoparticles–Polymers Hybrid Materials I. Polymers, 14(15), 3117. https://doi.org/10.3390/polym14153117