Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standards and Reagents
2.2. Polymerization Process
2.3. Analysis
2.3.1. Thermogravimetric Analysis-TGA
2.3.2. Differential Scanning Calorimetry Analysis-DSC
2.3.3. Melt Flow Index-MFI
2.3.4. X-ray Fluorescence
2.3.5. Infrared Fourier Transform Analysis-FT-IR
2.3.6. Gas Chromatography Analysis with Selective Mass Detector (GC-MS)
2.3.7. Headspace-GC-MS
3. Results
3.1. Polymerization Process
3.1.1. Quantification of Arsine at the Polymerization Stage
3.1.2. Reaction Mechanisms of AsH3 Proposed during Polymerization: Reaction of Residual AsH3 with TiCl4/MgCl2
3.1.3. Discussion of FTIR Analysis
3.2. Effects of Arsine on the Properties of PP
3.2.1. Effects of Arsenic Content on Virgin PP MFI
3.2.2. Degradation of Residual PP
3.3. Degassing Process
3.3.1. Identification and Quantification of Arsine in the Degassing Stage of PP Resin
3.3.2. Mechanisms of Reaction of Peroxy Radicals in Arsenic Complexes to Form the VOCs Identified in PP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quinteros, J.G. Sintesis y Aplicaciones de Ligandos Arsinas. Estudios de Sistemas Catalíticos de Pd y Au; Universidad Nacional de Córdoba: Córdoba, Spain, 2016. [Google Scholar]
- Gras, R.; Luong, J.; Hawryluk, M.; Monagle, M. Analysis of part-per-billion level of arsine and phosphine in light hydrocarbons by capillary flow technology and dielectric barrier discharge detector. J. Chromatogr. A 2010, 1217, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X. Hydrogen bonding in the complexes formed by arsine and H-X molecules: A theoretical study. Chem. Phys. Lett. 2019, 735, 136767. [Google Scholar] [CrossRef]
- Burt, J.; Levason, W.; Reid, G. Coordination chemistry of the main group elements with phosphine, arsine and stibine ligands. Coord. Chem. Rev. 2014, 260, 65–115. [Google Scholar] [CrossRef] [Green Version]
- Green, J. Transition Metals in the Synthesis of Complex Organic Molecules. J. Am. Chem. Soc. 2010, 132, 1443. [Google Scholar] [CrossRef]
- Orpen, A.G.; Connelly, N.G. Structural systematics: The role of PA. sigma.* orbitals in metal-phosphorus .pi.-bonding in redox-related pairs of M-PA3 complexes (A = R, Ar, OR; R = alkyl). Organometallics 1990, 9, 1206–1210. [Google Scholar] [CrossRef]
- Crabtree, R.H. The Organometallic Chemistry of the Transition Metals; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- McCleverty, J.A.; Meyer, T.J. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology. J. Am. Chem. Soc. 2004, 126. [Google Scholar] [CrossRef]
- Treichel, P.M. Phosphine, Arsine, and Stibine Complexes of the Transition Elementes; Elsevier Scientific Publishing Co.: Amsterdam, The Netherlands, 1979; Volume 9. [Google Scholar] [CrossRef]
- Wilkinson, G.; Gillard, R.D.; McCleverty, J.A. Comprehensive Coordination Chemistry: The Synthesis, Reactions, Properties and Applications of Coordination Compounds; Pergamon Press: Oxford, UK, 1987; Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:19039703 (accessed on 1 November 2021).
- Rodríguez, M.E. Funcionalización de Ligandos Coordinados; Universidad de Coruña: Coruña, Spain, 2017. [Google Scholar]
- Hernández-Fernández, J. Quantification of arsine and phosphine in industrial atmospheric emissions in Spain and Colombia. Implementation of modified zeolites to reduce the environmental impact of emissions. Atmos. Pollut. Res. 2021, 12, 167–176. [Google Scholar] [CrossRef]
- Carrizo, D.S. Estudios Computacionales en Catálisis Homogénea con Metales de Transición: Reacción de Stille, Activación de Enlaces C-H y β-Eliminación; Universidad Nacional de Córdoba: Córdoba, Spain, 2016. [Google Scholar]
- Arlinghaus, R.T.; Andrews, L. Infrared spectra of the PH3, AsH3, and SbH 3-HX hydrogen bonded complexes in solid argon J. Chem. Phys. 1984, 81, 4341–4351. [Google Scholar] [CrossRef]
- Joaquin, H.-F.; Juan, L. Quantification of poisons for Ziegler Natta catalysts and effects on the production of polypropylene by gas chromatographic with simultaneous detection: Pulsed discharge helium ionization, mass spectrometry and flame ionization. J. Chromatogr. A 2020, 1614, 460736. [Google Scholar] [CrossRef]
- Kurahashi, E.; Wada, T.; Nagai, T.; Chammingkwan, P.; Terano, M.; Taniike, T. Synthesis of polypropylene functionalized with a trace amount of reactive functional groups and its utilization in graft-type nanocomposites. Polymer 2018, 158, 46–52. [Google Scholar] [CrossRef]
- Karol, F.J.; Jacobson, F.I. Catalysis and the Unipol Process. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 1986; Volume 25. [Google Scholar] [CrossRef]
- Mier, J.; Artiaga, R.; Soto, L.G. Síntesis de Polímeros. Pesos moleculares. Conformación y configuración. Elementos Estructurales con Materiales Polímeros: Ferrol; Universidad de Coruña: Coruña, Spain, 1997; pp. 11–48. [Google Scholar]
- Bailar, J.C.; Emeléus, H.J.; Nyholm, R.; Trotman-Dickenson, A.F. Comprehensive Inorganic Chemistry; Elsevier: Amsterdam, The Netherlands, 1973; Volume 3. [Google Scholar] [CrossRef]
- Nikolaeva, M.; Mikenas, T.; Matsko, M.; Zakharov, V. Effect of AlEt3 and an External Donor on the Distribution of Active Sites According to Their Stereospecificity in Propylene Polymerization over TiCl4/MgCl2 Catalysts with Different Titanium Content. Macromol. Chem. Phys. 2016, 217, 1384–1395. [Google Scholar] [CrossRef]
- Panchenko, V.N.; Vorontsova, L.V.; Zakharov, V.A. Ziegler-Natta catalysts for propylene polymerization—Interaction of an external donor with the catalyst. Polyolefins J. 2017, 4, 87–97. [Google Scholar] [CrossRef]
- Vizen, E.I.; Rishina, L.A.; Sosnovskaja, L.N.; Dyachkovsky, F.S.; Dubnikova, I.L.; Ladygina, T.A. Study of hydrogen effect in propylene polymerization on (with) the MgC12- Supported Ziegler-Natta catalyst-Part 2. Effect of Cs2 on polymerization centres. Eur. Polym. J 1994, 30, 1315–1318. [Google Scholar]
- Kallio, K.; Wartmann, A.; Reichert, K.-H. Reactivation of a Poisoned Metallocene Catalyst by Irradiation with Visible Light. Macromol. Rapid Commun. 2002, 23, 187–190. [Google Scholar] [CrossRef]
- Bahri-Laleh, N. Interaction of different poisons with MgCl2/TiCl4 based Ziegler-Natta catalysts. Appl. Surf. Sci. 2016, 379, 395–401. [Google Scholar] [CrossRef]
- Asynkiewicz, S.P. Reactions of organoaluminium compounds with electron donors. Pure Appl. Chem. 1972, 30, 509–522. [Google Scholar] [CrossRef]
- Hernández-Fernández, J. Quantification of oxygenates, sulphides, thiols and permanent gases in propylene. A multiple linear regression model to predict the loss of efficiency in polypropylene production on an industrial scale. J. Chromatogr. A 2020, 1628, 461478. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yin, Y.; Wang, X.; Tu, D.M.; Kao, K.C. Formation and inhibition of free radicals in electrically stressed and aged insulating polymers. J. Appl. Polym. Sci. 2003, 89, 3416–3425. [Google Scholar] [CrossRef]
- Cavallo, L.; Del Piero, S.; Ducéré, J.M.; Fedele, R.; Melchior, A.; Morini, G.; Piemontesi, F.; Tolazzi, M. Key interactions in heterogeneous Ziegler-Natta catalytic systems: Structure and energetics of TiCL4-lewis base complexes. J. Phys. Chem. C 2007, 111, 4412–4419. [Google Scholar] [CrossRef]
- Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Mirmohammadi, S.A. A DFT study on the effect of hydrogen in ethylene and propylene polymerization using a Ti-based heterogeneous Ziegler-Natta catalyst. J. Organomet. Chem. 2012, 719, 74–79. [Google Scholar] [CrossRef]
- Correa, A.; Bahri-Laleh, N.; Cavallo, L. How well can DFT reproduce key interactions in Ziegler-Natta systems? Macromol. Chem. Phys. 2013, 214, 1980–1989. [Google Scholar] [CrossRef]
- Joaquin, H.-F.; Juan, L.-M. Autocatalytic influence of different levels of arsine on the thermal stability and pyrolysis of polypropylene. J. Anal. Appl. Pyrolysis 2022, 161, 105385. [Google Scholar] [CrossRef]
- Arshouee, G.H.; Zarand, S.M.G. Determination of Catalyst Residence Time, Heat Generation, and Monomer Conversion via Process Variables during Propylene Polymerization by a Mathematical Model. Theor. Found. Chem. Eng. 2021, 55, 140–152. [Google Scholar] [CrossRef]
- Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Quantification and elimination of substituted synthetic phenols and volatile organic compounds in the wastewater treatment plant during the production of industrial scale polypropylene. Chemosphere 2021, 263, 128027. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; López-Martínez, J. Experimental study of the auto-catalytic effect of triethylaluminum and TiCl4 residuals at the onset of non-additive polypropylene degradation and their impact on thermo-oxidative degradation and pyrolysis. J. Anal. Appl. Pyrolysis 2021, 155, 105052. [Google Scholar] [CrossRef]
- Zhang, S.; Li, B.; Lin, M.; Li, Q.; Gao, S.; Yi, W. Effect of a novel phosphorus-containing compound on the flame retardancy and thermal degradation of intumescent flame retardant polypropylene. J. Appl. Polym. Sci. 2011, 122, 3430–3439. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Rayón, E.; López, J.; Arrieta, M.P. Enhancing the Thermal Stability of Polypropylene by Blending with Low Amounts of Natural Antioxidants. Macromol. Mater. Eng. 2019, 304, 1900379. [Google Scholar] [CrossRef]
- Bremner, T.; Rudin, A.; Cook, D.G. Melt flow index values and molecular weight distributions of commercial thermoplastics. J. Appl. Polym. Sci. 1990, 41, 1617–1627. [Google Scholar] [CrossRef]
- Ivin, K.J.; Rooney, J.J.; Stewart, C.D.; Green, M.L.H.; Mahtab, R. Mechanism for the stereospecific polymerization of olefins by Ziegler–Natta catalysts. J. Chem. Soc. Chem. Commun. 1978, 14, 604–606. [Google Scholar] [CrossRef]
- Padilla Paz, R.M. Síntesis y Estudio de Cpmplejos Organometálicos de Iridio con N-Aril-4,5-dimetilen-1,3-oxazolidin-2-onas y Complejos de Cobre con Furoiltioureas; Universidad Autónoma del estado de Hidalgo: Hidalgo, Mexico, 2006. [Google Scholar]
- Castro, C.A.; Eguren, L.; Korswagen, R.P. Catalizadores Ziegler-Natta utilizados para polimerizar propileno y etileno. Rev. De Química 1987, 1, 5–13. [Google Scholar]
- Natta, G.; Pasquon, I.; Giachetti, E. Kinetics of the stereospecific polymerization of polypropylene to isotactic polymers. In Stereoregular Polymers and Stereospecific Polymerizations; Elsevier: Amsterdam, The Netherlands, 1967. [Google Scholar] [CrossRef]
- Chien, J.C.W.; Bres, P. Magnesium Chloride Supported High Mileage Catalysts for Olefin Polymerization. XIII. Effect of External Lewis Base on Ethylene Polymerization. J. Polym. Sci. Part A Polym. Chem. 1986, 24, 1967–1988. [Google Scholar] [CrossRef]
- Bhaduri, S.; Mukhopadhyay, S.; Kulkarni, S.A. Role of titanium oxidation states in polymerization activity of Ziegler-Natta catalyst: A density functional study. J. Organomet. Chem. 2006, 691, 2810–2820. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Kulkarni, S.A.; Bhaduri, S. Density functional study on the role of electron donors in propylene polymerization using Ziegler-Natta catalyst. J. Organomet. Chem. 2005, 690, 1356–1365. [Google Scholar] [CrossRef]
- Jensen, V.R.; Borve, K.J.; Ystenesg, M. Ziegler-Natta Ethylene Insertion Reaction for a Five-Coordinate Titanium Chloride Complex Bridged to an Aluminum Hydride Cocatalyst. J. Am. Chem. Soc. 1995, 117, 4109–4117. [Google Scholar] [CrossRef]
- Zakharov, I.I.; Zakharov, V.A.; Zhidomirov, G.M. Quantum chemical studies of propene, ethylene, acetylene and dihydrogen reactivity in the insertion reaction into the titanium-alkyl bond. Macromol. Theory Simul. 1996, 5, 837–843. [Google Scholar] [CrossRef]
- Cavallo, L.; Guerra, G.; Corradini, P. Mechanisms of Propagation and Termination Reactions in Classical Heterogeneous Ziegler−Natta Catalytic Systems: A Nonlocal Density Functional Study. J. Am. Chem. Soc. 1998, 120, 2428–2436. [Google Scholar] [CrossRef]
- Cheremisinoff, N.P. Handbook of Polymer Science and Technology: Synthesis and Properties; John Wiley & Sons Ltd.: London, UK, 1989. [Google Scholar]
- Gordy, W. A Relation between Bond Force Constants, Bond Orders, Bond Lengths, and the Electronegativities of the Bonded Atoms. J. Chem. Phys. 1946, 14, 305–320. [Google Scholar] [CrossRef]
- Myneni, S.C.B.; Traina, S.J.; Waychunas, G.A.; Logan, T.J. Vibrational spectroscopy of functional group chemistry and arsenate coordination in ettringite. Geochim. Cosmochim. Acta 1998, 62, 3499–3514. [Google Scholar] [CrossRef]
- Mowery, D.M.; Assink, R.A.; Derzon, D.K.; Klamo, S.B.; Clough, R.L.; Bernstein, R. Solid-State 13C NMR Investigation of the Oxidative Degradation of Selectively Labeled Polypropylene by Thermal Aging and γ-Irradiation. Macromolecules 2005, 38, 5035–5046. [Google Scholar] [CrossRef]
- Hamid, S.H. Handbook of Polymer Degradation, 2nd ed.; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Carlsson, D.J.; Wiles, D.M. The Photooxidative Degradation of Polypropylene. Part I. Photooxidation and Photoinitiation Processes. J. Macromol. Sci. Part C Polym. Rev. 1976, 14, 65–106. [Google Scholar] [CrossRef]
- Rangaraj, V.M.; Singh, S.; Devaraju, S.; Wadi, V.S.; Alhassan, S.; Anjum, D.H.; Mittal, V. Polypropylene/phosphazene nanotube nanocomposites: Thermal, mechanical, and flame retardation studies. J. Appl. Polym. Sci. 2020, 137, 49525. [Google Scholar] [CrossRef]
- Kurt, G.; Kasgoz, A. Effects of molecular weight and molecular weight distribution on creep properties of polypropylene homopolymer. J. Appl. Polym. Sci. 2021, 138, 50722. [Google Scholar] [CrossRef]
- Schoolenberg, G.E.; Vink, P. Ultra-violet degradation of polypropylene: 1. Degradation profile and thickness of the embrittled surface layer. Polymer 1991, 32, 432–437. [Google Scholar] [CrossRef]
- Rouillon, C.; Bussiere, P.O.; Desnoux, E.; Collin, S.; Vial, C.; Therias, S.; Gardette, J.L. Is carbonyl index a quantitative probe to monitor polypropylene photodegradation? Polym. Degrad. Stab. 2016, 128, 200–208. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, K.; Zhang, Z.; Shi, R. Quantitative relationship between melting peak temperature and carbonyl index of polypropylene during UV aging based on date fitting. IOP Conf. Ser. Mater. Sci. Eng. 2018, 322, 022016. [Google Scholar] [CrossRef]
Run | Catalyst [kg/h] | Propylene [TM/h] | TEAl 1 [kg/h] | Hydrogen [g/h] | Nitrogen | Arsine [ppm] | Selectivity Control Agent [mol/h] | T [°C] | Pressure [bar] |
---|---|---|---|---|---|---|---|---|---|
0 | 5 | 1.2 | 0.25 | 30 | . | 0 | 1 | 70 | 27 |
1 | 5 | 1.2 | 0.25 | 30 | . | 0.05 | 1 | 70 | 27 |
5 | 5 | 1.2 | 0.25 | 30 | . | 0.84 | 1 | 70 | 27 |
10 | 5 | 1.2 | 0.25 | 30 | . | 4.73 | 1 | 70 | 27 |
Stage | Point | Substance | State of Origin | Identification |
---|---|---|---|---|
Feeding | A | Propylene | LPG | A0, A1, A5, A10 |
B | Nitrogen | Gas | B0, B1, B5, B10 | |
C | Hydrogen | Gas | C0, C1, C5, C10 | |
D | Arsine | LPG | D0, D1, D5, D10 | |
Reaction | E | Gases | Inside the reactor | E0, E1, E5, E10 |
F | Catalyst | Inside the reactor | F0, F1, F5, F10 | |
G | Catalyst | Catalytic system | G0, G1, G5, G10 | |
H | Propylene | Recovered | H0, H1, H5, H10 | |
Degassing | I | Resin | Exits the reactor | I0, I1, I5, I10 |
J | Gases | Retired in the purge | J0, J1, J5, J10 | |
K | Polypropylene | Dust | K0, K1, K5, K10 |
Compound (ppm) | Point I | Point J | Point K | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
I0 | I1 | I5 | I10 | J0 | J1 | J5 | J10 | K0 | K1 | K5 | K10 | |
AsH3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Alcohol | 10.1 | 50.2 | 81.5 | 180.1 | 15.2 | 80.2 | 100 | 310.1 | 5.1 | 7.5 | 20.1 | 50.5 |
Ketone | 19.5 | 80.2 | 160.1 | 220.1 | 30.2 | 130.1 | 220 | 280.7 | 4.5 | 10.6 | 31.5 | 45.5 |
Aldehydes | 13.2 | 60.1 | 121.5 | 242.7 | 25.2 | 91.5 | 172 | 270.1 | 7.1 | 11.7 | 22.3 | 21.2 |
Acid | 20.1 | 97.1 | 210.1 | 351.7 | 32.1 | 161.2 | 308 | 425.1 | 4.5 | 23.4 | 41.5 | 33.3 |
CO | 0 | 0 | 0.2 | 1.1 | 0 | 0 | 0.4 | 3.2 | 0 | 0 | 0 | 0.1 |
CO2 | 0.1 | 1.5 | 5.5 | 11.3 | 1.2 | 2.1 | 8 | 20.2 | 0 | 0.1 | 1.2 | 1.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Fernández, J.; Guerra, Y.; Puello-Polo, E.; Marquez, E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers 2022, 14, 3123. https://doi.org/10.3390/polym14153123
Hernández-Fernández J, Guerra Y, Puello-Polo E, Marquez E. Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers. 2022; 14(15):3123. https://doi.org/10.3390/polym14153123
Chicago/Turabian StyleHernández-Fernández, Joaquín, Yoleima Guerra, Esneyder Puello-Polo, and Edgar Marquez. 2022. "Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene" Polymers 14, no. 15: 3123. https://doi.org/10.3390/polym14153123
APA StyleHernández-Fernández, J., Guerra, Y., Puello-Polo, E., & Marquez, E. (2022). Effects of Different Concentrations of Arsine on the Synthesis and Final Properties of Polypropylene. Polymers, 14(15), 3123. https://doi.org/10.3390/polym14153123