Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Environmental Sample
2.1.2. Reference Samples
2.2. Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS)
3. Results and Discussion
3.1. Py-GC/MS Analysis of the PM Samples
3.2. Py-GC/MS Analysis of the Reference Samples
3.3. Py-GC/MS Analysis of the TRWP and AWP Collected near the Bus Stop
3.4. Sources of the Organic Polymeric Components in the PM Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, R.; Wang, G.; Guo, S.; Zamora, M.L.; Ying, Q.; King, Y.; Wang, W.; Hu, M.; Wang, Y. Formation of urban fine particulate matter. Chem. Rev. 2015, 115, 3803–3855. [Google Scholar] [CrossRef] [PubMed]
- Panko, J.M.; Hitchcock, K.M.; Fuller, G.W.; Green, D. Evaluation of tire wear contribution to PM2.5 in urban environment. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Karagulian, F.; Belis, C.A.; Dora, C.F.C.; Prüss-Ustün, A.M.; Bonjour, S.; Adair-Rohani, H.; Amann, M. Contributions to cities’ ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos. Environ. 2015, 120, 475–483. [Google Scholar] [CrossRef]
- Ryou, H.G.; Heo, J.; Kim, S.-Y. Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea. Environ. Pollut. 2018, 240, 963–972. [Google Scholar] [CrossRef]
- Park, S.-M.; Song, I.-H.; Park, J.S.; Oh, J.; Moon, K.J.; Shin, H.J.; Ahn, J.Y.; Lee, M.-D.; Kim, J.; Lee, G. Variation of PM2.5 chemical compositions and their contributions to light extinction in Seoul. Aerosol Air Qual. Res. 2018, 18, 2220–2229. [Google Scholar] [CrossRef]
- Sun., J.; Qin, D.; Mayeswski, P.A.; Dibb, J.E.; Whitlow, S.; Li, Z.; Yang, Q. Soluble species in aerosol and snow and their relationship at Glacier 1, Tien Shan, China. J. Geophys. Res. Atmos. 1998, 103, 28021–28028. [Google Scholar] [CrossRef]
- Zhao., S.; Li, Z.; Zhou, P. Ion chemistry and individual particle analysis of atmospheric aerosols over Mt. Bogda of eastern Tianshan Mountains, Central Asia. Environ. Monit. Assess. 2011, 180, 409–426. [Google Scholar] [CrossRef]
- Cheng, Y.; Lee, S.; Gu, Z.; Ho, K.; Zhang, Y.; Huang, Y.; Chow, J.C.; Watson, J.G.; Cao, J.; Chang, R. PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology 2015, 18, 96–104. [Google Scholar] [CrossRef]
- Jancsek-Turóczi, B.; Hoffer, A.; Nyírő-Kósa, I.; Gelencsér, A. Sampling and characterization of resuspended and respirable. J. Aerosol Sci. 2013, 65, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Bai, Z. Characteristics of organic and elemental carbon in atmospheric fine particles in Tianjin, China. Particuology 2009, 7, 432–437. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Antony Chen, L.-W. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 2005, 5, 65–102. [Google Scholar] [CrossRef] [Green Version]
- Schaap, M.; Weijers, E.P.; Mooibroek, D.; Nguyen, L.; Hoogerbrugge, R. Composition and Origin of Particulate Matter in the Netherlands; Netherlands Environmental Assessment Agency: The Hague, The Netherlands, 2010. [Google Scholar]
- Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Mantilla, E.; Ruiz, C.R. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources. Atmos. Environ. 2001, 35, 845–858. [Google Scholar] [CrossRef]
- Zhou, X.; Li, Z.; Zhang, T.; Wang, F.; Tao, Y.; Zhang, X.; Wang, F.; Huang, J.; Cheng, T.; Jiang, H.; et al. Chemical nature and predominant sources of PM10 and PM2.5 from multiple sites on the Silk Road, Northwest China. Atmos. Pollut. Res. 2021, 12, 425–436. [Google Scholar] [CrossRef]
- Martellini, T.; Giannoni, M.; Lepri, L.; Katsoyiannis, A.; Cincinelli, A. One year intensive PM2.5 bound polycyclic aromatic hydrocarbons monitoring in the area of Tuscany, Italy. Concentrations, source understanding and implications. Environ. Pollut. 2012, 164, 252–258. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Torkmahalleh, M.A.; Saeedi, R.; Aibaghi, R.; Ghasemi, F.F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implication. Environ. Res. 2021, 192, 110339–110351. [Google Scholar] [CrossRef] [PubMed]
- Narmadha, V.V.; Jose, J.; Patil, S.; Farooqui, M.O.; Srimuruganandam, B.; Saravanadevi, S.; Krishnamurthi, K. Assessment of microplastics in roadside suspended dust from urban and rural environment of Nagpur, India. Int. J. Environ. Res. 2020, 14, 629–640. [Google Scholar] [CrossRef]
- Gaston, E.; Woo, M.; Steele, C.; Sukumaran, S.; Anderson, S. Microplastics differ between indoor and outdoor air masses: Insights from multiple microscopy methodologies. Appl. Spectrosc. 2020, 74, 1079–1098. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh Country, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef] [Green Version]
- Unice, K.M.; Kreider, M.L.; Panko, J.M. Use of deuterated internal standard with pyrolysis-GC/MS dimeric marker analysis to quantify tire tread particles in the environment. Int. J. Environ. Res. Public Health 2012, 9, 4033–4055. [Google Scholar] [CrossRef]
- Panko, J.M.; Chu, J.; Kreider, M.L.; Unice, K.M. Measurement of airborne concentrations of tire and road wear particles in urban and rural areas of France, Japan, and the United States. Atmos. Environ. 2013, 72, 192–199. [Google Scholar] [CrossRef]
- ISO/TS 20593; Ambient Air-Determination of the Mass Concentration of Tire and Road Wear Particles (TRWP)-Pyrolysis-GC-MS Method.
- Dierkes, G.; Lauschke, T.; Becher, S.; Schumacher, H.; Földi, C.; Ternes, T. Quantification of microplastics in environmental samples via pressurized liquid extraction and pyrolysis-gas chromatography. Anal. Bioanal. Chem. 2019, 411, 6959–6968. [Google Scholar] [CrossRef] [PubMed]
- Eisentraut, P.; Dümichen, E.; Ruhl, A.S.; Jekel, M.; Albrecht, M.; Gehde, M.; Braun, U. Two birds with one stone-fast and simultaneous analysis of microplastics: Microparticles derived from thermoplastics and tire wear. Environ. Sci. Technol. Lett. 2018, 5, 608–613. [Google Scholar] [CrossRef]
- Steinmetz, Z.; Kintzi, A.; Muñoz, K.; Schaumann, G.E. A simple method for the selective quantification of polyethylene, polypropylene, and polystyrene plastic debris in soil by pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis 2020, 147, 104803. [Google Scholar] [CrossRef]
- David, J.; Steinmetz, Z.; Kučerik, J.; Schaumann, G.E. Quantitative analysis of poly (ethylene terephthalate) microplastics in soil via thermogravimetry-mass spectrometry. Anal. Chem. 2018, 90, 8793–8799. [Google Scholar] [CrossRef]
- Fischer, M.; Scholz-Bottcher, B.M. Microplastics analysis in environmental samples-recent pyrolysis-gas chromatography-mass spectrometry method improvements to increase the reliability of mass-related data. Anal. Methods 2019, 11, 2489–2497. [Google Scholar] [CrossRef]
- Bower, N.W.; Blanchet, C.J.K. Analytical pyrolysis-chromatography: Something old, something new. J. Chem. Educ. 2010, 87, 467–469. [Google Scholar] [CrossRef]
- Buco, S.; Moragues, M.; Doumenq, P.; Noor, A.; Mille, G. Analysis of polycyclic aromatic hydrocarbons in contaminated soil by Curie point pyrolysis coupled to gas chromatography-mass spectrometry, an alternative to conventional methods. J. Chromatogr. A 2004, 1026, 223–229. [Google Scholar] [CrossRef]
- Choi, S.-S.; Ko, J.-E. Influence of thermal aging on pyrolysis pattern of carbon black-filled NR composite. Macromol. Res. 2007, 15, 482–485. [Google Scholar] [CrossRef]
- Choi, S.-S. Correlation of crosslink density with pyrolysis pattern of natural rubber vulcanizates with efficient vulcanizing cure system. J. Anal. Appl. Pyrolysis 1999, 52, 105–112. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Suchocki, T.; Kardas, D.; Lewandowski, W.; Klugmann-Radziemska, E.; Łuczak, J. Waste rubber pyrolysis: Product yields and limonene concentration. Materials 2020, 13, 4435. [Google Scholar] [CrossRef] [PubMed]
- Son, C.E.; Yang, S.R.; Choi, S.-S. Abrasion behaviors of NR/BR compounds using laboratory abrasion tester. Elast. Compos. 2021, 56, 12–19. [Google Scholar]
- Chae, E.; Jung, U.; Choi, S.-S. Quantification of tire tread wear particles in microparticles produced on the road using oleamide as a novel marker. Environ. Pollut. 2021, 288, 117811. [Google Scholar] [CrossRef]
- Choi, S.-S.; Yang, S.R.; Chae, E.; Son, C.E. Influence of carbon black contents and rubber compositions on formation of wear debris of rubber vulcanizates. Elast. Compos. 2020, 55, 108–113. [Google Scholar]
- Miyazaki, T. Rubber Composition. European Patent EP3459996, 27 March 2019. [Google Scholar]
- Ghoreishy, M.H.R.; Alimardani, M.; Mehrabian, R.Z.; Gangali, S.T. Modeling the hyperviscoelastic behavior of a tire tread compound reinforced by silica and carbon black. J. Appl. Polym. Sci. 2013, 128, 1725–1731. [Google Scholar]
- Yang, Q.; Yu, S.; Zhong, H.; Liu, T.; Yao, E.; Zhang, Y.; Zou, H.; Du, W. Gas products generation mechanism during co-pyrolysis of styrene-butadiene rubber and natural rubber. J. Hazard. Mater. 2021, 401, 12330. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-S.; Kwon, H.-M. Analytical method for determination of microstructures of solution styrene-butadiene copolymers using 2-phenylpropene/styrene ratio of pyrolysis products. Polym. Test. 2015, 44, 153–159. [Google Scholar] [CrossRef]
- Choi, S.-S.; Kwon, H.-M. Characterization of pyrolysis products formed from styrene-1,2-unit heterosequence of styrene-butadiene copolymer. J. Anal. Appl. Pyrolysis 2013, 99, 1–8. [Google Scholar] [CrossRef]
- Ghebremeskel, G.N.; Sekinger, J.K.; Hoffpaiir, J.L.; Hendrix, C. A study of the thermal degradation products of styrene-butadiene type rubber by pyrolysis/GC/MS. Rubber Chem. Technol. 1996, 69, 874–884. [Google Scholar] [CrossRef]
- Dhahak, A.; Hild, G.; Rouaud, M.; Mauviel, G.; Burkle-Vitzthum, V. Slow pyrolysis of polyethylene terephthalate: Online monitoring of gas production and quantitative analysis of waxy products. J. Anal. Appl. Pyrolysis 2019, 142, 104664. [Google Scholar] [CrossRef]
- Yoshioka, T.; Grause, G.; Eger, C.; Kaminsky, W.; Okuwaki, A. Pyrolysis of poly(ethylene terephthalate) in a fluidised bed plant. Polym. Deg. Stab. 2004, 86, 499–504. [Google Scholar] [CrossRef]
- Choi, S.-S.; Kim, M.-C.; Kim, Y.-K. Influence of silica on formation of levoglucosan from carbohydrates by pyrolysis. J. Anal. Appl. Pyrolysis 2011, 90, 56–62. [Google Scholar] [CrossRef]
- Choi, S.-S.; Kim, M.-C.; Kim, Y.-K. Formation of methoxybenzenes from cellulose in the presence of tetramethylammonium hydroxide by pyrolysis. Bull. Korean Chem. Soc. 2013, 34, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Liu, P.; Xu, Z.-X.; He, Z.-X.; Wang, Q. Bio-fuel oil characteristic of rice bran wax pyrolysis. Renew. Energy 2018, 119, 193–202. [Google Scholar] [CrossRef]
- Weber, J.; Schwark, L. Epicuticular wax lipid composition of endemic European Betula species in a simulated ontogenetic/diagenetic continuum and its application to chemotaxonomy and paleobotany. Sci. Total Environ. 2020, 730, 138324. [Google Scholar] [CrossRef] [PubMed]
Peak No. | Product | Peak Area (103) (Intensity Ratio) |
---|---|---|
1 | isoprene | 668 (1.70) |
2 | 1-hexene | 526 (1.33) |
3 | benzene | 1339 (3.40) |
4 | 1-heptene | 511 (1.30) |
5 | toluene | 520 (1.32) |
6 | 1-octene | 316 (0.80) |
7 | styrene | 614 (1.56) |
8 | 1-nonene | 606 (1.54) |
9 | 1-decene | 440 (1.12) |
10 | dipentene | 746 (1.89) |
11 | 1-undecene | 394 (1.00) |
12 | 1-dodecene | 287 (0.73) |
Peak No. | Pyrolysis Product | Peak Area (103) (Intensity Ratio) | |||
---|---|---|---|---|---|
PM2.5(1) | PM2.5(2) | PM2.5(3) | PM2.5(4) | ||
1 | isoprene | 697 (0.83) | 339 (1.09) | 438 (1.08) | 602 (0.76) |
2 | 1-hexene | 591 (0.70) | trace | 413 (1.01) | 531 (0.67) |
3 | benzene | 4121 (4.92) | 1395 (4.47) | 762 (1.87) | 595 (0.75) |
4 | 1-heptene | 734 (0.88) | 167 (0.53) | 273 (0.67) | 1065 (1.34) |
5 | toluene | 664 (0.79) | 548 (1.76) | 737 (1.81) | 498 (0.63) |
6 | 1-octene | 551 (0.66) | 188 (0.60) | 288 (0.71) | 457 (0.58) |
7 | furfural | --- | 196 (0.63) | 46 (0.11) | --- |
8 | styrene | 1381 (1.65) | 1540 (4.94) | 1768 (4.34) | 792 (1.00) |
9 | 1-nonene | 846 (1.01) | 224 (0.72) | 394 (0.97) | 515 (0.65) |
10 | 1-decene | 873 (1.04) | 254 (0.82) | 444 (1.09) | 742 (0.94) |
11 | dipentene | 1479 (1.76) | 529 (1.70) | 880 (2.16) | 1991 (2.51) |
12 | acetophenone | --- | 316 (1.01) | 51 (0.13) | trace |
13 | 4-methylphenol | --- | 263 (0.84) | 92 (0.23) | 136 (0.17) |
14 | 1-undecene | 838 (1.00) | 312 (1.00) | 407 (1.00) | 792 (1.00) |
15 | benzoic acid | --- | 561 (1.80) | 506 (1.24) | 174 (0.22) |
Polymer | Principal Pyrolysis Products |
---|---|
NR | isoprene, dipentene |
BR | 1,3-butadiene, 4-vinylcyclohexene (VCH) |
SBR | 1,3-butadiene, VCH, styrene, 2-phenylpropene (2-PP), 3-phenylcyclopentene (3-PCH), 4-phenylcyclohexene (4-PCH) |
PE | alkanes, 1-alkenes, alkadienes |
PP | 2-methyl-1-pentene, 2,4-dimethyl-1-heptene, 2,4,6-trimethyl-1-nonene |
PS | styrene, 2-PP, biphenyl |
PET | benzene, acetophenone, vinyl benzoate, benzoic acid, 4-methylbenzoic acid |
Bitumen | 1,3-butadiene, styrene, phenol, 1-ethenyl-4-methylbenzene, indene, 1-undecene, 1-dodecene, 4-(1-methylethyl)-phenol |
Pyrolysis Product | Bark | Wood | Leaf-1 | Leaf-2 |
---|---|---|---|---|
furfural | 0.27 | 1.30 | 0.80 | 0.94 |
styrene | 0.14 | 0.03 | 0.25 | 0.12 |
1-decene | 0.09 | --- | --- | --- |
2,2-diethyl-3-methyl-oxazolidine | 0.12 | 1.64 | 0.49 | 0.87 |
dipentene | 0.07 | 0.16 | 0.22 | 0.11 |
4-methylphenol | 0.31 | 0.13 | 0.73 | 0.35 |
2-methoxyphenol | 0.69 | 0.88 | 0.72 | 0.62 |
1-undecene | 0.08 | --- | --- | --- |
maltol | --- | 0.17 | 0.17 | 0.19 |
2-methoxy-4-methylphenol | 1.00 | 1.00 | 1.00 | 1.00 |
1-dodecene | 0.09 | --- | --- | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, E.; Choi, S.-S. Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Polymers 2022, 14, 3122. https://doi.org/10.3390/polym14153122
Chae E, Choi S-S. Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Polymers. 2022; 14(15):3122. https://doi.org/10.3390/polym14153122
Chicago/Turabian StyleChae, Eunji, and Sung-Seen Choi. 2022. "Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry" Polymers 14, no. 15: 3122. https://doi.org/10.3390/polym14153122
APA StyleChae, E., & Choi, S. -S. (2022). Analysis of Polymeric Components in Particulate Matter Using Pyrolysis-Gas Chromatography/Mass Spectrometry. Polymers, 14(15), 3122. https://doi.org/10.3390/polym14153122