Minimizing the Global Warming Potential with Geopolymer-Based Insulation Material with Miscanthus Fiber
Abstract
:1. Introduction
2. Geopolymer-Based Insulation Material
3. GWP of Materials Used for the Production of Geopolymer-Based Insulation Material
3.1. GWP of Sodium Silicate
Country of Origin | Conc. Sodium Silicate Literature Value [wt%] | GWP [kg CO2-eq. kg−1] | GWP Conc. 36 wt% [kg CO2-eq. kg−1] * | GWP Conc. 100 wt% [kg CO2-eq. kg−1] * | SiO2 [%] | Na2O [%] | Ref. |
---|---|---|---|---|---|---|---|
Australia | |||||||
Turner and Collins (2013) | 44.1 | 1.514 | 1.236 * | 3.433 * | 29.4 | 14.7 | [14] |
Teh et al. (2017) | 36 | 0.33 * | 0.91 | 29.4 | 14.7 | [4] | |
Sandanayake et al. (2018) | 44.1 | 0.78 | 0.63 * | 1.77 * | 29.4 | 14.7 | [8] |
Colombia | |||||||
Rivera et al. (2020) | 44.75 | 0.823 | 0.662 * | 1.84 * | 30.18 | 14.57 | [23] |
Robayo-Salazar et al. (2018) | 44.01 | 0.7925 | 0.6483 * | 1.801 * | 32.09 | 11.92 | [27] |
Robayo-Salazar et al. (2017) | 44.01 | 0.926 | 0.758 * | 2.10 * | 32.09 | 11.92 | [28] |
Finland | |||||||
Mastali et al. (2020) | 36 | 0.59 | 0.590 * | 1.640 | 71.5 * | 28.5 * | [17] |
Germany | |||||||
ProBas (2005) | 100 | 0.737 | 0.737 | n.a. | n.a. | [29] | |
Italy | |||||||
Coppola et al. (2018) | 36 | 0.45 | 0.45 * | 1.24 | 75 * | 25 * | [21] |
Coffetti et al. (2018) | 36 | 1.24 | 1.24 | 1.92 * | 4 | [21] | |
Portugal | |||||||
Cristelo et al. (2015) | 39 | 1.096 | 1.012 * | 2.810 * | 26 | 13 | [19] |
Abdollahnejad et al. (2017) | 100 | 1.76 | 1.76 | n.a. | n.a. | [25] | |
Spain | |||||||
Mellado et al. (2014) | 36 | 1.2 | 1.20 * | 3.3 * | 28 | 8 | [15] |
Font et al. (2020) | 36 | 1.213 | 1.213 * | 3.369 * | 28 | 8 | [16] |
South Korea | |||||||
Naqi and Jang (2019) | 100 | 3.61 | 3.61 | n.a. | n.a. | [24] | |
Switzerland | |||||||
Ouellet-Plamondon et al. (2015) | 36 | 1.14 | 3.08 * | 28.4 * | 8.6 * | [11] | |
Ouellet-Plamondon et al. (2015) | 36 | 0.63 * | 1.76 | 66.7 * | 33.3 * | [11] | |
Habert and Ouellet-Plamondon (2016) | 36 | 1.08 (Europe) 1.06 (globally) | 2.92 * (Europe) 2.86 * (globally) | n.a. | n.a. | [30] | |
United Kingdom | |||||||
Scrivener et al. (2018) | 55 | 1.1 | 0.72 * | 2 * | n.a. | n.a. | [31] |
USA | |||||||
Nguyen et al. (2018) | 36 | 0.241 * | 0.671 | 66.7 * | 33.3 * | [32] | |
Alghamdi et al. (2018) | 36 | 0.55 | 0.55 * | 1.53 * | 27.7 * | 8.3 * | [22] |
Western Europe | |||||||
Heath et al. (2014) | 0.445 | 1.203 * | 28.4 * | 8.6 * | [14] | ||
Fawer et al. (1999) | 48 | 288 | 1.066 * | 32 * | 16 * | [13] |
3.2. Miscanthus Fibers
3.3. Fly Ash
Country of Origin | GWP [kg CO2-eq.] | Allocation of CO2-eq. Emissions | Ref. |
---|---|---|---|
Australia | |||
Flower and Sanjayan (2007) | 27 | processing, transport | [48] |
Gunasekara et al. (2021) | 0.0032 | material extraction to production, transport | [56] |
Canada | |||
Arrigoni et al. (2020) | 0.024 (cut-off approach) −0.062 (substitution approach) | transport; avoided disposal | [54] |
Colombia | |||
Balaguera et al. (2019) | 2.89 × 10−1 | transport | [55] |
Denmark | |||
Naroznova et al. (2016) | 0.0132 | production and combustion, landfill, electricity, fuel | [52] |
Finland | |||
Ohenoja et al. (2020) | −0.15 * | sequestration | [47] |
France | |||
Habert et al. (2011) | 5.26 × 10−3 | processing | [45] |
Hong Kong | |||
Hossain et al. (2016) | 0.006 | collection, processing, transport | [53] |
Portugal | |||
Kurda et al. (2018) | 0.004 | economic allocation (combustion, extraction, transport) | [51] |
Teixeira et al. (2016) | 1.01 × 10−2 | classification, combustion, extraction, transport | [49] |
South Korea | |||
Lee at al. (2021) | 1.73 × 10−3 | economic allocation (combustion, extraction, transport) | [57] |
Yang et al. (2015) | 0.0196 | processing, storage | [58] |
USA | |||
Chen et al. (2019) | 15.894 2584.743 (mass allocation) 328.467 (economic allocation) | processing, transport | [46] |
Nguyen et al. (2018) | 0.006 | collection, processing | [32] |
4. Insulation Materials for Wall Construction
5. Calculation of GWP of Geopolymer-Based Insulation Material with Miscanthus Fibers
6. Conclusions
- The GWP of the sodium silicate strongly depends on the production, transportation, and energy consumption and is published in a range from 0.3 kg to 3.3 kg CO2-eq. kg−1.
- The consumption of greenhouse gas by Miscanthus × giganteus varies in a range from 3 to 40 metric tons CO2-eq. ha−1. Using a mean consumption of 20 tons CO2-eq. ha−1 and a mean harvestable yield of about 20 tons dry mass, the mean consumption of greenhouse gas for 1 kg Miscanthus was calculated as 1 kg CO2-eq.
- The GWP of all formulations is lower compared to systems based on mineral wool and polystyrene (EPS). The formulation with the lowest impact has the highest fiber content of 40%.
- According to the current regulations for thermal insulation materials, the resulting GWP of geopolymer-based insulation materials with Miscanthus fibers is 10% or lower compared to conventional systems.
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manso, M.; Castro-Gomes, J.; Paulo, B.; Bentes, I.; Teixeira, C.A. Life cycle analysis of a new modular greening system. Sci. Total Environ. 2018, 627, 1146–1153. [Google Scholar] [CrossRef] [PubMed]
- Umwelt Bundesamt (UBA). Übersicht zur Entwicklung der energiebedingten Emissionen und Brennstoffeinsätze in Deutschland. Clim. Chang. 2019, 19. [Google Scholar]
- Heldele, R. Entwicklung und Charakterisierung von Formmassen fuer das Mikropulverspritzgiessen. 2009. Available online: http://www.freidok.uni-freiburg.de/volltexte/6724/ (accessed on 28 January 2022).
- Teh, S.H.; Wiedmann, T.; Castel, A.; de Burgh, J. Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in Australia. J. Clean. Prod. 2017, 152, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. False Values on CO2 Emission for Geopolymer Cement/Concrete published in Scientific Papers. Tech. Pap. 2015, 24, 1–9. [Google Scholar]
- Živica, V.; Palou, M.T.; Križma, M. Geopolymer Cements and Their Properties: A Review. Build. Res. J. 2015, 61, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Zhao, Y.; Xing, J.; Sun, X. Fly Ash/Blast Furnace Slag-Based Geopolymer as a Potential Binder for Mine Backfilling: Effect of Binder Type and Activator Concentration. Adv. Mater. Sci. Eng. 2019, 2019, 2028109. [Google Scholar] [CrossRef] [Green Version]
- Sandanayake, M.; Gunasekara, C.; Law, D.; Zhang, G.; Setunge, S. Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. J. Clean. Prod. 2018, 204, 399–408. [Google Scholar] [CrossRef]
- Geža, V.; Jakovičs, A.; Gendelis, S.; Usiļonoks, I.; Timofejevs, J. Thermal conductivity of disperse insulation materials and their mixtures. IOP Conf. Ser. Mater. Sci. Eng. 2017, 251, 012012. [Google Scholar] [CrossRef] [Green Version]
- Blanco, I.; Cicala, G.; Recca, G.; Tosto, C. Specific Heat Capacity and Thermal Conductivity Measurements of PLA-Based 3D-Printed Parts with Milled Carbon Fiber Reinforcement. Entropy 2022, 24, 654. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Habert, G. Life Cycle Assessment (LCA) of Alkali-Activated Cements and Concretes; Woodhead Publishing Limited: Thorston, UK, 2015. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Fawer, M.; Concannon, M.; Rieber, W. Life cycle inventories for the production of sodium silicates. Int. J. Life Cycle Assess. 1999, 4, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Heath, A.; Paine, K.; McManus, M. Minimising the global warming potential of clay based geopolymers. J. Clean. Prod. 2014, 78, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Mellado, A.; Catalán, C.; Bouzón, N.; Borrachero, M.V.; Monzó, J.M.; Payá, J. Carbon footprint of geopolymeric mortar: Study of the contribution of the alkaline activating solution and assessment of an alternative route. RSC Adv. 2014, 4, 23846–23852. [Google Scholar] [CrossRef]
- Font, A.; Soriano, L.; Tashima, M.M.; Monzó, J.; Borrachero, M.V.; Payá, J. One-part eco-cellular concrete for the precast industry: Functional features and life cycle assessment. J. Clean. Prod. 2020, 269, 122203. [Google Scholar] [CrossRef]
- Mastali, M.; Shaad, K.M.; Abdollahnejad, Z.; Falah, M.; Kinnunen, P.; Illikainen, M. Towards sustainable bricks made with fiber-reinforced alkali-activated desulfurization slag mortars incorporating carbonated basic oxygen furnace aggregates. Constr. Build. Mater. 2020, 232, 117258. [Google Scholar] [CrossRef]
- Abbas, R.; Khereby, M.A.; Ghorab, H.Y.; Elkhoshkhany, N. Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technol. Environ. Policy 2020, 22, 669–687. [Google Scholar] [CrossRef]
- Cristelo, N.; Miranda, T.; Oliveira, D.V.; Rosa, I.; Soares, E.; Coelho, P.; Fernandes, L. Assessing the production of jet mix columns using alkali activated waste based on mechanical and financial performance and CO2 (eq) emissions. J. Clean. Prod. 2015, 102, 447–460. [Google Scholar] [CrossRef]
- Roy, P.; Defersha, F.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A.K. Evaluation of the life cycle of an automotive component produced from biocomposite. J. Clean. Prod. 2020, 273, 123051. [Google Scholar] [CrossRef]
- Coppola, L.; Coffetti, D.; Crotti, E. Pre-packed alkali activated cement-free mortars for repair of existing masonry buildings and concrete structures. Constr. Build. Mater. 2018, 173, 111–117. [Google Scholar] [CrossRef]
- Alghamdi, H.; Neithalath, N. Novel synthesis of lightweight geopolymer matrices from fly ash through carbonate-based activation. Mater. Today Commun. 2018, 17, 266–277. [Google Scholar] [CrossRef]
- Rivera, J.F.; de Gutiérrez, R.M.; Ramirez-Benavides, S.; Orobio, A. Compressed and stabilized soil blocks with fly ash-based alkali-activated cements. Constr. Build. Mater. 2020, 264, 120285. [Google Scholar] [CrossRef]
- Naqi, A.; Jang, J.G. Recent progress in green cement technology utilizing low-carbon emission fuels and raw materials: A review. Sustainability 2019, 11, 537. [Google Scholar] [CrossRef] [Green Version]
- Abdollahnejad, Z.; Miraldo, S.; Pacheco-Torgal, F.; Aguiar, J.B. Cost-efficient one-part alkali-activated mortars with low global warming potential for floor heating systems applications. Eur. J. Environ. Civ. Eng. 2017, 21, 412–429. [Google Scholar] [CrossRef] [Green Version]
- Coffetti, D. Alternative Binders as Milestone of 3R Strategy for Sustainable Construction Materials. Ph.D. Thesis, University of Bergamo, Bergamo, Italy, 2019. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Mejía-Arcila, J.; de Gutiérrez, R.M.; Martínez, E. Life cycle assessment (LCA) of an alkali-activated binary concrete based on natural volcanic pozzolan: A comparative analysis to OPC concrete. Constr. Build. Mater. 2018, 176, 103–111. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Mejía-Arcila, J.M.; de Gutiérrez, R.M. Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J. Clean. Prod. 2017, 166, 242–252. [Google Scholar] [CrossRef]
- Wasserglas Data from 2004. Available online: www.probas.umweltbundesamt.de (accessed on 28 January 2022).
- Habert, G.; Ouellet-Plamondon, C. Recent update on the environmental impact of geopolymers. RILEM Tech. Lett. 2016, 1, 17. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industr. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Nguyen, L.; Moseson, A.J.; Farnam, Y.; Spatari, S. Effects of composition and transportation logistics on environmental, energy and cost metrics for the production of alternative cementitious binders. J. Clean. Prod. 2018, 185, 628–645. [Google Scholar] [CrossRef]
- Wu, F.; Yu, Q.; Brouwers, H.J.H. Effects of treated miscanthus on performance of bio-based cement mortar. J. Sustain. Cem. Mater. 2022, 1–12. [Google Scholar] [CrossRef]
- Farges, R.; Gharzouni, A.; Ravier, B.; Jeulin, P.; Rossignol, S. Insulating foams and dense geopolymers from biochar by-products. J. Ceram. Sci. Technol. 2018, 9, 193–200. [Google Scholar] [CrossRef]
- Chen, Y.X.; Klima, K.M.; Brouwers, H.J.H.; Yu, Q. Effect of silica aerogel on thermal insulation and acoustic absorption of geopolymer foam composites: The role of aerogel particle size. Compos. Part B Eng. 2022, 242, 110048. [Google Scholar] [CrossRef]
- Dias, P.P.; Jayasinghe, L.B.; Waldmann, D. Investigation of Mycelium-Miscanthus composites as building insulation material. Results Mater. 2021, 10, 100189. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, Y.; Kato, R.; Rowan, S.J. Preparation of cellulose nanofibers from Miscanthus x. Giganteus by ammonium persulfate oxidation. Carbohydr. Polym. 2019, 212, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Savic, A.; Antonijevic, D.; Jelic, I.; Zakic, D. Thermomechanical behavior of bio-fiber composite thermal insulation panels. Energy Build. 2020, 229, 110511. [Google Scholar] [CrossRef]
- Fradj, N.B.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European bio-economy: A network analysis. Ind. Crops Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Parajuli, R.; Sperling, K.; Dalgaard, T. Environmental performance of Miscanthus as a fuel alternative for district heat production. Biomass Bioenergy 2015, 72, 104–116. [Google Scholar] [CrossRef]
- Bajpai, R.; Choudhary, K.; Srivastava, A.; Singh, K. Environmental impact assessment of fly ash and silica fume based geopolymer concrete. J. Clean. Prod. 2020, 254, 120147. [Google Scholar] [CrossRef]
- Assi, L.N.; Carter, K.; Deaver, E.; Ziehl, P. Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 2020, 263, 121477. [Google Scholar] [CrossRef]
- Chowdhury, R.; Apul, D.; Fry, T. Resources, Conservation and Recycling A life cycle based environmental impacts assessment of construction materials used in road construction. Resour. Conserv. Recycl. 2010, 54, 250–255. [Google Scholar] [CrossRef]
- Ricciotti, L.; Occhicone, A.; Petrillo, A.; Ferone, C. Geopolymer-based Hybrid Foams: Lightweight materials from a sustainable production process. J. Clean. Prod. 2019, 250, 119588. [Google Scholar] [CrossRef]
- Habert, G.; d’Espinose de Lacaillerie, J.B.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Najm, H.; Venkiteela, G.; Hencken, J. Evaluating engineering properties and environmental impact of pervious concrete with fl y ash and slag. J. Clean. Prod. 2019, 237, 117714. [Google Scholar] [CrossRef]
- Ohenoja, K.; Rissanen, J.; Kinnunen, P.; Illikainen, M. Direct carbonation of peat-wood fl y ash for carbon capture and utilization in construction application. J. CO2 Util. 2020, 40, 101203. [Google Scholar] [CrossRef]
- Flower, D.J.M.; Sanjayan, J.G. Green House Gas Emissions due to Concrete Manufacture. Int. J. Life Cycle Assess. 2007, 12, 282–288. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Mateus, R.; Cam, A.F.; Branco, F.G. Comparative environmental life-cycle analysis of concretes using biomass and coal fly ashes as partial cement replacement material. J. Clean. Prod. 2016, 112, 2221–2230. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, C.V. Carbon Footprint of Concrete Buildings seen in the Life Cycle Perspective. In Proceedings of the NRMCA 2008 Concrete Technology Forum, Denver, CO, USA, 20–22 May 2008; pp. 1–14. [Google Scholar]
- Conservation, R.; Kurda, R.; de Brito, J. Life cycle assessment of concrete made with high volume of recycled concrete aggregates and fly ash. Resour. Conserv. Recycl. 2018, 139, 407–417. [Google Scholar] [CrossRef]
- Naroznova, I.; Møller, J.; Scheutz, C. Global warming potential of material fractions occurring in source-separated organic household waste treated by anaerobic digestion or incineration under different framework conditions. Waste Manag. 2016, 58, 397–407. [Google Scholar] [CrossRef]
- Kong, H.; Hossain, U.; Sun, C.; Lo, I.M.C.; Cheng, J.C.P. Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resour. Conserv. Recycl. 2017, 120, 199–208. [Google Scholar] [CrossRef]
- Arrigoni, A.; Panesar, D.K.; Duhamel, M.; Opher, T.; Saxe, S.; Posen, I.D.; Maclean, H.L.; Ash, F.; Ash, G.B.; Rice, G.; et al. Life cycle greenhouse gas emissions of concrete containing supplementary cementitious materials: Cut-off vs. substitution. J. Clean. Prod. 2020, 263, 121465. [Google Scholar] [CrossRef]
- Balaguera, A.; Isabel, G.; Paul, Y.; Albertí, J.; Fullana-i-palmer, P. Science of the Total Environment Technical feasibility and life cycle assessment of an industrial waste as stabilizing product for unpaved roads, and in fl uence of packaging. Sci. Total Environ. 2019, 651, 1272–1282. [Google Scholar] [CrossRef]
- Gunasekara, C.; Sandanayake, M.; Zhou, Z.; Law, D.W.; Setunge, S. Effect of nano-silica addition into high volume fly ash—hydrated lime blended concrete. Constr. Build. Mater. 2020, 253, 119205. [Google Scholar] [CrossRef]
- Lee, J.; Lee, T.; Jeong, J.; Jeong, J. Mix design optimization and environmental impact assessment of low-carbon materials containing alkali-activated slag and high CaO fly ash. Constr. Build. Mater. 2020, 10, 120932. [Google Scholar] [CrossRef]
- Yang, K.; Jung, Y.; Cho, M.; Tae, S. Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J. Clean. Prod. 2015, 103, 774–783. [Google Scholar] [CrossRef]
- Geb, F.F. Ökobilanzbetrachtung im Lebenszyklus von Dämmstoffen. 2015. Available online: https://www.eckener-schule-flensburg.de/fstug/fileadmin/user_upload/redaktionsmaterial/GST/Bericht_OEkobilanzen.pdf (accessed on 28 January 2022).
- Declaration, Rockwool, Density Range, Rockwool, EPD Declar. 2018. Available online: https://www.rockwool.com/siteassets/o2-rockwool/documentation/epd/rockwool-stone-wool-environmental-product-declaration-epd.pdf (accessed on 27 July 2022).
- Walbrück, K.; Maeting, F.; Witzleben, S.; Stephan, D. Natural Fiber-Stabilized Geopolymer Foams—A Review. Materials 2020, 13, 3198. [Google Scholar] [CrossRef] [PubMed]
Properties | Density | Thermal Conductivity | GWP for 1 m³ Insulation Material | Thickness of Insulation | GWP for 1 m² Wall Insulation | Ref. |
---|---|---|---|---|---|---|
[kg m−3] | [W m−1 K−1] | [kg CO2 m−³] | [cm] | [kg CO2-eq.] | ||
Polystyrene EPS 035 | 30 | 0.035 | 75 | 15 | 389 | [59] |
Hemp fiber | 50 | 0.04 | −96 | 17 | −16 | [59] |
Miscanthus fiber | 40 | 0.035 | −82 | 15 | −12 | [59] |
Mineral wool | 80 | 0.035 | 37 | 15 | 432 | [60] |
Foamed concrete | 250 | 0.07 | 167 | 29 | 12,177 | [59] |
Foamed concrete | 400 | 0.1 | 167 | 42 | 27,833 | [59] |
Wood (OSB) | 650 | 0.13 | −500 | 54 | −35 | [59] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Witzleben, S. Minimizing the Global Warming Potential with Geopolymer-Based Insulation Material with Miscanthus Fiber. Polymers 2022, 14, 3191. https://doi.org/10.3390/polym14153191
Witzleben S. Minimizing the Global Warming Potential with Geopolymer-Based Insulation Material with Miscanthus Fiber. Polymers. 2022; 14(15):3191. https://doi.org/10.3390/polym14153191
Chicago/Turabian StyleWitzleben, Steffen. 2022. "Minimizing the Global Warming Potential with Geopolymer-Based Insulation Material with Miscanthus Fiber" Polymers 14, no. 15: 3191. https://doi.org/10.3390/polym14153191
APA StyleWitzleben, S. (2022). Minimizing the Global Warming Potential with Geopolymer-Based Insulation Material with Miscanthus Fiber. Polymers, 14(15), 3191. https://doi.org/10.3390/polym14153191