Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Polypyrrole and Polypyrrole-Polyethyleneimine Synthesis
2.3. Characterization of PPy Nano-Adsorbents
2.3.1. Surface Analysis
2.3.2. Thermal Property Measurement
2.3.3. Gel Permeation Chromatography
2.3.4. X-ray Diffraction (XRD)
2.3.5. Morphological Analysis
2.4. Batch Adsorption
3. Results and Discussion
3.1. Physical Characteristics of PPy-PEI
3.2. Thermal Analysis
3.2.1. Thermogravimetric Analysis (TGA)
3.2.2. Differential Scanning Calorimetry (DSC)
3.3. Gel Permeation Chromatography (GPC)
3.4. Effect of Adsorbent Doses
3.5. Impact of Initial pH
3.6. Impact of Contact Time
3.7. Impact of the Temperature
3.8. Adsorption Isotherm
3.9. Adsorption Kinetics
3.10. Reusability and Regeneration of the Methylene Blue Adsorbent
4. Comparative Profile with Previous Literature
5. Conclusions and Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.; Qari, H.A.; Umar, K.; Mohamad Ibrahim, M.N. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Khandare, R.V.; Govindwar, S.P. Phytoremediation of textile dyes and effluents: Current scenario and future prospects. Biotechnol. Adv. 2015, 33, 1697–1714. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Saha, P.D. Artificial neural network (ANN) modeling of adsorption of methylene blue by NaOH-modified rice husk in a fixed-bed column system. Environ. Sci. Pollut. Res. 2013, 20, 1050–1058. [Google Scholar] [CrossRef]
- Qwane, S.N.; Mdluli, P.S.; Madikizela, L.M. Synthesis, characterization and application of a molecularly imprinted polymer in selective adsorption of abacavir from polluted water. S. Afr. J. Chem. 2020, 73, 84–91. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Isa, M.H.; Affam, A.C.; Aminu, N.; Abubakar, S.; Noor, A.; Lawal, I.M.; Umaru, I.; Hassan, I. Effect of Environmental and Operational Parameters on Sequential Batch Reactor Systems in Dye Degradation. In Dye Biodegradation, Mechanisms and Techniques; Springer: Berlin/Heidelberg, Germany, 2022; pp. 193–225. [Google Scholar]
- Li, Y.; Du, Q.; Liu, T.; Sun, J.; Wang, Y.; Wu, S.; Wang, Z.; Xia, Y.; Xia, L. Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr. Polym. 2013, 95, 501–507. [Google Scholar] [CrossRef]
- Ahmad, A.; Setapar, S.H.M.; Yaqoob, A.A.; Ibrahim, M.N.M. Synthesis and characterization of GO-Ag nanocomposite for removal of malachite dye from aqueous solution. Mater. Today Proc. 2021, 47, 1359–1365. [Google Scholar] [CrossRef]
- Kanwal, A.; Yaqoob, A.A.; Siddique, A.; Bhawani, S.A.; Ibrahim, M.N.M.; Umar, K. Hybrid Nanocomposites Based on Graphene and Its Derivatives: From Preparation to Applications. In Graphene and Nanoparticles Hybrid Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2021; pp. 261–281. [Google Scholar]
- Boukoussa, B.; Hakiki, A.; Moulai, S.; Chikh, K.; Kherroub, D.E.; Bouhadjar, L.; Guedal, D.; Messaoudi, K.; Mokhtar, F.; Hamacha, R. Adsorption behaviors of cationic and anionic dyes from aqueous solution on nanocomposite polypyrrole/SBA-15. J. Mater. Sci. 2018, 53, 7372–7386. [Google Scholar] [CrossRef]
- Safian, M.T.-U.; Umar, K.; Parveen, T.; Yaqoob, A.A.; Ibrahim, M.N.M. Biomedical applications of smart polymer composites. In Smart Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 183–204. [Google Scholar]
- Popuri, S.R.; Vijaya, Y.; Boddu, V.M.; Abburi, K. Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour. Technol. 2009, 100, 194–199. [Google Scholar] [CrossRef]
- Al-Mahbashi, N.M.Y.; Kutty, S.R.M.; Bilad, M.R.; Jagaba, A.H.; Al-Nini, A.; Ghaleb, A.A.S.; Al-dhawi, B.N.S. Bencg-scale Fixed-Bed Column Study for the removal of Dye-Contaminanted Effuent Using Sewage-Sluge-Based Biochar. Sustainability 2022, 14, 6484. [Google Scholar] [CrossRef]
- Rameez Khan, R.M.; Choudhary, M.A.; Ahmad, Z.; Ibrahim, M.N.M.; Adnan, R.; Yaqoob, A.A.; Rashid, M. Copper oxide nanoparticles: A heterogeneous catalyst for synthesis of 3-(2-chlorophenyl)-2, 4-pentadione. Inorg. Nano-Met. Chem. 2021, 1–9. [Google Scholar] [CrossRef]
- Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P. Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 2001, 77, 247–255. [Google Scholar] [CrossRef]
- Oyekanmi, A.A.; Latiff, A.A.A.; Daud, Z.; Mohamed, R.; Aziz, N.; Ismail, N.; Rafatullah, M.; Ahmad, A.; Hossain, K. Adsorption of pollutants from palm oil mill effluent using natural adsorbents: Optimization and isotherm studies. Desalin. Water Treat. 2019, 169, 181–190. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Ahmad, A.; Vijaya Bhaskar Reddy, A. Toxicology and environmental application of carbon nanocomposite. In Environmental Remediation through Carbon Based Nano Composites; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–18. [Google Scholar]
- Auta, M.; Hameed, B. Coalesced chitosan activated carbon composite for batch and fixed-bed adsorption of cationic and anionic dyes. Colloids Surf. B Biointerfaces 2013, 105, 199–206. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ahmad, A.; Ibrahim, M.N.M.; Rashid, M. Chitosan-based nanocomposites for gene delivery: Application and future perspectives. In Polysaccharide-Based Nanocomposites for Gene Delivery and Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2021; pp. 245–262. [Google Scholar]
- Qiao, A.; Cui, M.; Huang, R.; Ding, G.; Qi, W.; He, Z.; Klemeš, J.J.; Su, R. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes. Carbohydr. Polym. 2021, 272, 118471. [Google Scholar] [CrossRef]
- Baloo, L.; Isa, M.H.; Sapari, N.B.; Jagaba, A.H.; Wei, L.J.; Yavari, S.; Razali, R.; Vasu, R. Adsorptive removal of methylene blue and acid orange 10 dyes from aqueous solutions using oil palm wastes-derived activated carbons. Alex. Eng. J. 2021, 60, 5611–5629. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Hayder, G.; Baloo, L.; Noor, A.; Yaro, N.S.A.; Saeed, A.A.H.; Lawal, I.M.; Birniwa, A.H.; Usman, A.K. A systematic literature review on waste-to-resource potential of palm oil clinker for sustainable engineering and environmental applications. Materials 2021, 14, 4456. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Salih, G.H.A.; Noor, A.; bin Md Hafiz, M.F.U.; Yaro, N.S.A.; Saeed, A.A.H.; Lawal, I.M.; Birniwa, A.H.; Kilaco, A.U. Palm Oil Clinker as a Waste By-Product: Utilization and Circular Economy Potential; IntechOpen: London, UK, 2021. [Google Scholar]
- Deng, H.; Yang, L.; Tao, G.; Dai, J. Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation—Application in methylene blue adsorption from aqueous solution. J. Hazard. Mater. 2009, 166, 1514–1521. [Google Scholar] [CrossRef]
- Uddin, M.T.; Rukanuzzaman, M.; Khan, M.M.R.; Islam, M.A. Adsorption of methylene blue from aqueous solution by jackfruit (Artocarpus heteropyllus) leaf powder: A fixed-bed column study. J. Environ. Manag. 2009, 90, 3443–3450. [Google Scholar] [CrossRef]
- Ponnusami, V.; Vikram, S.; Srivastava, S. Guava (Psidium guajava) leaf powder: Novel adsorbent for removal of methylene blue from aqueous solutions. J. Hazard. Mater. 2008, 152, 276–286. [Google Scholar] [CrossRef]
- Pavan, F.A.; Mazzocato, A.C.; Gushikem, Y. Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent. Bioresour. Technol. 2008, 99, 3162–3165. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Sharma, A. Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes Pigment. 2005, 65, 51–59. [Google Scholar] [CrossRef]
- Vadivelan, V.; Kumar, K.V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interface Sci. 2005, 286, 90–100. [Google Scholar] [CrossRef]
- Jagaba, A.H.; Kutty, S.R.M.; Noor, A.; Birniwa, A.H.; Affam, A.C.; Lawal, I.M.; Kankia, M.U.; Kilaco, A.U. A systematic literature review of biocarriers: Central elements for biofilm formation, organic and nutrients removal in sequencing batch biofilm reactor. J. Water Process Eng. 2021, 42, 102178. [Google Scholar] [CrossRef]
- Nadupalli, S.; Dasireddy, V.D.; Koorbanally, N.A.; Jonnalagadda, S.B. Kinetics of oxidation of triaryl methane dye, brilliant blue-r with chlorine dioxide. S. Afr. J. Chem. 2019, 72, 40–46. [Google Scholar] [CrossRef]
- Tabari, T.; Tavakkoli, H.; Zargaran, P.; Beiknejad, D. Fabrication of Perovskite-type Oxide BaPbO3 Nanoparticles and their Efficiency in Photodegradation of Methylene Blue. S. Afr. J. Chem. 2012, 65, 239–244. [Google Scholar]
- Umar, K.; Yaqoob, A.A.; Ibrahim, M.N.M.; Parveen, T.; Safian, M.T.-U. Environmental applications of smart polymer composites. In Smart Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 295–312. [Google Scholar]
- Ovando-Medina, V.M.; Vizcaíno-Mercado, J.; González-Ortega, O.; Rodríguez de la Garza, J.A.; Martínez-Gutiérrez, H. Synthesis of α-cellulose/polypyrrole composite for the removal of reactive red dye from aqueous solution: Kinetics and equilibrium modeling. Polym. Compos. 2015, 36, 312–321. [Google Scholar] [CrossRef]
- Abdi, M.M.; Kassim, A.; Mahmud, H.E.; Yunus, W.M.M.; Talib, Z.A.; Sadrolhosseini, A.R. Physical, optical, and electrical properties of a new conducting polymer. J. Mater. Sci. 2009, 44, 3682–3686. [Google Scholar] [CrossRef]
- Li, J.; Feng, J.; Yan, W. Excellent adsorption and desorption characteristics of polypyrrole/TiO2 composite for Methylene Blue. Appl. Surf. Sci. 2013, 279, 400–408. [Google Scholar] [CrossRef]
- Khosravi Mohammad Soltan, F.; Hajiani, M.; Haji, A. Nylon-6/poly (propylene imine) dendrimer hybrid nanofibers: An effective adsorbent for the removal of anionic dyes. J. Text. Inst. 2021, 112, 444–454. [Google Scholar] [CrossRef]
- Haji, A.; Mehrizi, M.K.; Sarani, M. Surface modification of Polypropylene Nonwoven by plasma and β-Cyclodextrin: Optimization and cationic dye removal studies. Surf. Interfaces 2021, 25, 101278. [Google Scholar] [CrossRef]
- Abdouss, M.; Mousavi Shoushtari, A.; Majidi Simakani, A.; Akbari, S.; Haji, A. Citric acid-modified acrylic micro and nanofibers for removal of heavy metal ions from aqueous media. Desalin. Water Treat. 2014, 52, 7133–7142. [Google Scholar] [CrossRef]
- Abdouss, M.; Shoushtari, M.A.; Haji, A.; Moshref, B. Fabrication of chelating diethylenetriaminated pan micro-and nano-fibers for heavy metal removal. Chem. Ind. Chem. Eng. Q. 2012, 18, 27–34. [Google Scholar] [CrossRef]
- Abdouss, M.; Shoushtari, A.M.; Shamloo, N.; Haji, A. Modified PET fibres for metal ion and dye removal from aqueous media. Polym. Polym. Compos. 2013, 21, 251–258. [Google Scholar] [CrossRef]
- Mayer-Gall, T.; Opwis, K.; Gutmann, J.S. Polyvinylamine modified polyester fibers–innovative textiles for the removal of chromate from contaminated groundwater. J. Mater. Chem. A 2015, 3, 386–394. [Google Scholar] [CrossRef]
- Ayad, M.M.; Amer, W.A.; Zaghlol, S.; Minisy, I.M.; Bober, P.; Stejskal, J. Polypyrrole-coated cotton textile as adsorbent of methylene blue dye. Chem. Pap. 2018, 72, 1605–1618. [Google Scholar] [CrossRef]
- Li, S.-Q.; Yao, Q.; Chi, Y.; Yan, J.-H.; Cen, K.-F. Pilot-scale pyrolysis of scrap tires in a continuous rotary kiln reactor. Ind. Eng. Chem. Res. 2004, 43, 5133–5145. [Google Scholar] [CrossRef]
- Mukherjee, R.; De, S. Adsorptive removal of nitrate from aqueous solution by polyacrylonitrile–alumina nanoparticle mixed matrix hollow-fiber membrane. J. Membr. Sci. 2014, 466, 281–292. [Google Scholar] [CrossRef]
- Gouthaman, A.; Azarudeen, R.S.; Gnanaprakasam, A.; Sivakumar, V.; Thirumarimurugan, M. Polymeric nanocomposites for the removal of Acid red 52 dye from aqueous solutions: Synthesis, characterization, kinetic and isotherm studies. Ecotoxicol. Environ. Saf. 2018, 160, 42–51. [Google Scholar] [CrossRef]
- Xin, Q.; Fu, J.; Chen, Z.; Liu, S.; Yan, Y.; Zhang, J.; Xu, Q. Polypyrrole nanofibers as a high-efficient adsorbent for the removal of methyl orange from aqueous solution. J. Environ. Chem. Eng. 2015, 3, 1637–1647. [Google Scholar] [CrossRef]
- Khan, M.I.; Almesfer, M.K.; Elkhaleefa, A.; Shigidi, I.; Shamim, M.Z.; Ali, I.H.; Rehan, M. Conductive Polymers and Their Nanocomposites as Adsorbents in Environmental Applications. Polymers 2021, 13, 3810. [Google Scholar] [CrossRef]
- Birniwa, A.H.; Abubakar, A.S.; Huq, A.O.; Mahmud, H.N.M.E. Polypyrrole-polyethyleneimine (PPy-PEI) nanocomposite: An effective adsorbent for nickel ion adsorption from aqueous solution. J. Macromol. Sci. Part A 2021, 58, 206–217. [Google Scholar] [CrossRef]
- Olatunji, M.A.; Khandaker, M.U.; Amin, Y.M.; Mahmud, H.N.M.E. Cadmium-109 radioisotope adsorption onto polypyrrole coated sawdust of dryobalanops aromatic: Kinetics and adsorption isotherms modelling. PLoS ONE 2016, 11, e0164119. [Google Scholar] [CrossRef]
- Wang, W.; Yu, D.; Tian, F. Synthesis and characterization of a new polypyrrole based on N-vinyl pyrrole. Synth. Met. 2008, 158, 717–721. [Google Scholar] [CrossRef]
- Ratajczak, K.; Stobiecka, M. Ternary interactions and energy transfer between fluorescein isothiocyanate, adenosine triphosphate, and graphene oxide nanocarriers. J. Phys. Chem. B 2017, 121, 6822–6830. [Google Scholar] [CrossRef]
- Hepel, M.; Stobiecka, M. Supramolecular interactions of oxidative stress biomarker glutathione with fluorone black. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 192, 146–152. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Zhang, J.; Liu, P.; Wang, A. A comparative study about adsorption of natural palygorskite for methylene blue. Chem. Eng. J. 2015, 262, 390–398. [Google Scholar] [CrossRef]
- Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53–61. [Google Scholar] [CrossRef]
- Amer, W.A.; Omran, M.M.; Rehab, A.F.; Ayad, M.M. Acid green crystal-based in situ synthesis of polyaniline hollow nanotubes for the adsorption of anionic and cationic dyes. RSC Adv. 2018, 8, 22536–22545. [Google Scholar] [CrossRef]
- Guin, J.P.; Bhardwaj, Y.; Varshney, L. Mineralization and biodegradability enhancement of Methyl Orange dye by an effective advanced oxidation process. Appl. Radiat. Isot. 2017, 122, 153–157. [Google Scholar] [CrossRef]
- Mohamed, F.; Abukhadra, M.R.; Shaban, M. Removal of safranin dye from water using polypyrrole nanofiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci. Total Environ. 2018, 640, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, M.; Mahvi, A.H.; Balarak, D.; Khatibi, A.D. Adsorption of Acid orange 7 dyes from aqueous solution using Polypyrrole/nanosilica composite: Experimental and modelling. Int. J. Environ. Anal. Chem. 2021, 1–18. [Google Scholar] [CrossRef]
- Castanheira, B.; Otubo, L.; Oliveira, C.L.; Montes, R.; Quintana, J.B.; Rodil, R.; Brochsztain, S.; Vilar, V.J.; Teixeira, A.C.S. Functionalized mesoporous silicas SBA-15 for heterogeneous photocatalysis towards CECs removal from secondary urban wastewater. Chemosphere 2022, 287, 132023. [Google Scholar] [CrossRef] [PubMed]
- Ke, G.; Zeng, Z.; Chen, S. Fabrication of polyacrylonitrile/polypyrrole nanofibrous mat and its adsorption to the cationic yellow dye. J. Text. Inst. 2021, 1–8. [Google Scholar] [CrossRef]
- Ovando-Medina, V.M.; Dávila-Guzmán, N.E.; Pérez-Aguilar, N.V.; Martínez-Gutiérrez, H.; Antonio-Carmona, I.D.; Martínez-Amador, S.Y.; Dector, A. A semi-conducting polypyrrole/coffee grounds waste composite for rhodamine B dye adsorption. Iran. Polym. J. 2018, 27, 171–181. [Google Scholar] [CrossRef]
- Heybet, E.N.; Ugraskan, V.; Isik, B.; Yazici, O. Adsorption of methylene blue dye on sodium alginate/polypyrrole nanotube composites. Int. J. Biol. Macromol. 2021, 193, 88–99. [Google Scholar] [CrossRef]
- Noreen, S.; Bhatti, H.N.; Iqbal, M.; Hussain, F.; Sarim, F.M. Chitosan, starch, polyaniline and polypyrrole biocomposite with sugarcane bagasse for the efficient removal of Acid Black dye. Int. J. Biol. Macromol. 2020, 147, 439–452. [Google Scholar] [CrossRef]
- Stejskal, J.; Kohl, M.; Trchová, M.; Kolská, Z.; Pekárek, M.; Křivka, I.; Prokeš, J. Conversion of conducting polypyrrole nanostructures to nitrogen-containing carbons and its impact on the adsorption of organic dye. Mater. Adv. 2021, 2, 706–717. [Google Scholar] [CrossRef]
- Chafai, H.; Laabd, M.; Elbariji, S.; Bazzaoui, M.; Albourine, A. Study of congo red adsorption on the polyaniline and polypyrrole. J. Dispers. Sci. Technol. 2017, 38, 832–836. [Google Scholar] [CrossRef]
Isotherm Model | Parameter | Temperature | ||
---|---|---|---|---|
20 °C | 40 °C | 60 °C | ||
Langmuir | qm (mg/g) | 183.3 | 146.5 | 131.4 |
kL (L/g) | 0.27 | 0.24 | 0.22 | |
RL | 0.062 | 0.11 | 0.11 | |
R2 | 0.994 | 0.886 | 0.929 | |
Freundlich | KF (L/g) | 112.0 | 77.0 | 70.1 |
N | 8.80 | 6.68 | 6.69 | |
R2 | 0.897 | 0.845 | 0.800 | |
Temkin | A | 0.063 | 0.192 | 0.228 |
B | 2.830 | 2.153 | 2.473 | |
R2 | 0.754 | 0.671 | 0.725 |
C0 (mg/L) | Qe Exp (mg/g) | First-Order Kinetic Model | Second-Order Kinetic Model | ||||
---|---|---|---|---|---|---|---|
Qe Cal (mg/g) | k1 | R2 | Qe Cal (mg/g) | k2 | R2 | ||
10 | 9.6 | 32.30 | 0.069 | 0.984 | 64.80 | 0.0421 | 0.997 |
20 | 19.5 | 95.02 | 0.044 | 0.903 | 100.30 | 0.0475 | 1.00 |
30 | 29.4 | 50.64 | 0.056 | 0.987 | 145.94 | 0.0972 | 0.999 |
40 | 38.9 | 17.69 | 0.060 | 0.865 | 172.88 | 0.3400 | 0.995 |
Type of Adsorbents | Type of Dyes | Experimental Conditions | Adsorption Capacity | References |
---|---|---|---|---|
Polypyrrole/zeolite (PPy/Ze) | Reactive blue (RB) and reactive red (RR) | (pH 9, initial RR or RB concentration, 75 mg/L; PPy/Ze dose, 1.8 g/L; and temperature, 50 °C). | Qmax (mg/g) 122.32(RB) 116.53(RR) | [60] |
Sodium alginate/polypyrrole | Methylene blue | temperature (25 °C), contact time, initial pH (7), adsorbent dosage (1–5 g/L), dye concentrations (10–50 mg/L). | 217.4/666.7 mg/g | [63] |
Polypyrrole/sugarcane bagasse, (PPy/SB) | Acid black-234 (AB-234) | pH 3; contact time about 60 min; dose 0.05 g; initial conc. 10 mg/L | 100 mg/g | [64] |
Polyacrylonitrile/polypyrrole (PAN/PPy) | Yellow dye. | 80 °C, 3 h, 30 mg/L | 59.63 mg/g | [61] |
Polypyrrole/nanosilica composite | Acid orange 7 (AO7) | 1 g/L, contact time 90 min, Initial AO7 concentration 10 mg/L, shaking speed = 200 rpm and temperature 328 K and pH = 3) | 181.4 mg/g. | [59] |
Polypyrrole-coated cotton textile | Methylene blue dye | 3.9 mg/L, 45 °C, pH 7400 min, | 3.30 mg/g | [43] |
Polypyrrole/coffee grounds waste | Rhodamine B dye | 200 mg/L, pH 9, 120 min, 25 °C and 125 mg dose | 50.59 mg of dye/g | [62] |
Polypyrrole nanostructures | Reactive black 5 | Dosage 0.2 gm, pH 9 and adsorption time 60 min, Temp 650 °C | 100 mg/g | [65] |
Polypyrrole | Congo red | Volume of the solution: 150 mL; Initial concentration: 20 mg/L; pH: pH6.55;. Adsorbent dosage: 1.73 g/L. Temperature: 25 °C. | 11.53 mg/g | [66] |
PPy-PEI nano-adsorbents | Methylene Blue | pH of 6.2; contact time 40 min at room temperature; dose 0.4 g | 183 mg/g | Present study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birniwa, A.H.; Mahmud, H.N.M.E.; Abdullahi, S.S.; Habibu, S.; Jagaba, A.H.; Ibrahim, M.N.M.; Ahmad, A.; Alshammari, M.B.; Parveen, T.; Umar, K. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers 2022, 14, 3362. https://doi.org/10.3390/polym14163362
Birniwa AH, Mahmud HNME, Abdullahi SS, Habibu S, Jagaba AH, Ibrahim MNM, Ahmad A, Alshammari MB, Parveen T, Umar K. Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers. 2022; 14(16):3362. https://doi.org/10.3390/polym14163362
Chicago/Turabian StyleBirniwa, Abdullahi Haruna, Habibun Nabi Muhammad Ekramul Mahmud, Shehu Sa’ad Abdullahi, Shehu Habibu, Ahmad Hussaini Jagaba, Mohamad Nasir Mohamad Ibrahim, Akil Ahmad, Mohammed B. Alshammari, Tabassum Parveen, and Khalid Umar. 2022. "Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent" Polymers 14, no. 16: 3362. https://doi.org/10.3390/polym14163362
APA StyleBirniwa, A. H., Mahmud, H. N. M. E., Abdullahi, S. S., Habibu, S., Jagaba, A. H., Ibrahim, M. N. M., Ahmad, A., Alshammari, M. B., Parveen, T., & Umar, K. (2022). Adsorption Behavior of Methylene Blue Cationic Dye in Aqueous Solution Using Polypyrrole-Polyethylenimine Nano-Adsorbent. Polymers, 14(16), 3362. https://doi.org/10.3390/polym14163362