Natural Ageing of PLA Filaments, Can It Be Frozen?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Anti-Ageing Methods
2.3. Thermal Analysis
2.4. Mechanical Characterisation and Fractography
3. Results and Discussion
3.1. Morphology
3.2. Thermal Properties
3.3. Mechanical Behaviour
3.3.1. Yield Strength
3.3.2. Elastic Modulus
3.3.3. Elongation at Break and Necking Formation
3.4. Microstructural and Fractographical Analysis
4. Conclusions
- Ageing was completely stopped by freezing PLA at −24 °C.
- No mechanical damage was produced in the frozen PLA.
- The presence or absence of desiccant during the freezing or defrosting process did not introduce measurable changes in the final state, properties, and behavior of the PLA.
- It is safe to freeze PLA at −24 °C inside PET zip-bags without a desiccant to stop ageing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vu, M.C.; Jeong, T.; Kim, J.; Choi, W.K.; Kim, D.H.; Kim, S. 3D printing of copper particles and poly(methyl methacrylate) beads containing poly(lactic acid) composites for enhancing thermomechanical properties. J. Appl. Polym. Sci. 2021, 138, 49776. [Google Scholar] [CrossRef]
- Zhou, X.; Deng, J.; Fang, C.; Lei, W.; Song, Y.; Zhang, Z.; Huang, Z.; Li, Y. Additive manufacturing of CNTs/PLA composites and the correlation between microstructure and functional properties. J. Mater. Sci. Technol. 2021, 60, 27–34. [Google Scholar] [CrossRef]
- Valino, A.D.; Dizon, J.R.C.; Espera, A.H., Jr.; Chen, Q.; Messman, J.; Advincula, R.C. Advances in 3D printing of thermoplastic polymer composites and nanocomposites. Prog. Polym. Sci. 2019, 98, 101162. [Google Scholar] [CrossRef]
- Han, R.; Buchanan, F.; Ford, L.; Julius, M.; Walsh, P. A Comparison of the Degradation Behaviour of 3D Printed PDLGA Scaffolds incorporating Bioglass or Biosilica. Mater. Sci. Eng. C 2020, 120, 111755. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar] [CrossRef]
- Signori, F.; Coltelli, M.-B.; Bronco, S. Thermal degradation of poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) and their blends upon melt processing. Polym. Degrad. Stab. 2009, 94, 74–82. [Google Scholar] [CrossRef]
- Hay, J.N. The physical ageing of amorphous and crystalline polymers. Pure Appl. Chem. 1995, 67, 1855–1858. [Google Scholar] [CrossRef]
- Hodge, I.M.; Berens, A.R. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 2. Mathematical modeling. Macromolecules 2002, 15, 762–770. [Google Scholar] [CrossRef]
- Hodge, I.M. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 4. Comparison of five polymers. Macromolecules 2002, 16, 898–902. [Google Scholar] [CrossRef]
- Napolitano, S.; Glynos, E.; Tito, N. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog. Phys. 2017, 80, 036602. [Google Scholar] [CrossRef]
- Gorrasi, G.; Pantani, R. Hydrolysis and Biodegradation of Poly(lactic acid). Adv. Polym. Sci. 2018, 279, 119–151. [Google Scholar] [CrossRef]
- Elsawy, M.A.; Kim, K.-H.; Park, J.-W.; Deep, A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sustain. Energy Rev. 2017, 79, 1346–1352. [Google Scholar] [CrossRef]
- Rodriguez, E.J.; Marcos, B.; Huneault, M.A. Hydrolysis of polylactide in aqueous media. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Valentina, I.; Haroutioun, A.; Fabrice, L.; Vincent, V.; Roberto, P. Tuning the hydrolytic degradation rate of poly-lactic acid (PLA) to more durable applications. AIP Conf. Proc. 2017, 1914, 210001. [Google Scholar] [CrossRef]
- Restrepo, I.; Medina, C.; Meruane, V.; Akbari-Fakhrabadi, A.; Flores, P.; Rodríguez-Llamazares, S. The effect of molecular weight and hydrolysis degree of poly(vinyl alcohol)(PVA) on the thermal and mechanical properties of poly(lactic acid)/PVA blends. Polimeros 2018, 28, 169–177. [Google Scholar] [CrossRef]
- Copinet, A.; Bertrand, C.; Govindin, S.; Coma, V.; Couturier, Y. Effects of ultraviolet light (315 nm), temperature and relative humidity on the degradation of polylactic acid plastic films. Chemosphere 2004, 55, 763–773. [Google Scholar] [CrossRef]
- Tsuji, H.; Sugiyama, H.; Sato, Y. Photodegradation of Poly(lactic acid) Stereocomplex by UV-Irradiation. J. Polym. Environ. 2012, 20, 706–712. [Google Scholar] [CrossRef]
- Tsuji, H.; Echizen, Y.; Saha, S.K.; Nishimura, Y. Photodegradation of Poly(L-lactic acid): Effects of Photosensitizer. Macromol. Mater. Eng. 2005, 290, 1192–1203. [Google Scholar] [CrossRef]
- Tsuji, H.; Echizen, Y.; Nishimura, Y. Photodegradation of biodegradable polyesters: A comprehensive study on poly(l-lactide) and poly(ɛ-caprolactone). Polym. Degrad. Stab. 2006, 91, 1128–1137. [Google Scholar] [CrossRef]
- Zaaba, N.F.; Jaafar, M. A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym. Eng. Sci. 2020, 60, 2061–2075. [Google Scholar] [CrossRef]
- Cangialosi, D.; Boucher, V.M.; Alegría, A.; Colmenero, J. Physical aging in polymers and polymer nanocomposites: Recent results and open questions. Soft Matter 2013, 9, 8619–8630. [Google Scholar] [CrossRef]
- Struik, L.C.E. Physical Aging in Amorphous Polymers and other Materials. Doctoral Thesis, Institutional Repository on TU Delft, Delft, The Netherlands, 1977. [Google Scholar]
- Eulate, N.G.P.-D.; Cangialosi, D. The very long-term physical aging of glassy polymers. Phys. Chem. Chem. Phys. 2018, 20, 12356–12361. [Google Scholar] [CrossRef] [PubMed]
- Barrasa, J.O.; Ferrández-Montero, A.; Ferrari, B.; Pastor, J.Y. Characterisation and Modelling of PLA Filaments and Evolution with Time. Polymers 2021, 13, 2899. [Google Scholar] [CrossRef] [PubMed]
- Moraczewski, K.; Stepczyńska, M.; Malinowski, R.; Karasiewicz, T.; Jagodziński, B.; Rytlewski, P. The Effect of Accelerated Aging on Polylactide Containing Plant Extracts. Polymers 2019, 11, 575. [Google Scholar] [CrossRef]
- Cui, L.; Imre, B.; Tátraaljai, D.; Pukánszky, B. Physical ageing of Poly(Lactic acid): Factors and consequences for practice. Polymer 2020, 186, 122014. [Google Scholar] [CrossRef]
- Cowie, J.M.G.; Arrighi, V. Physical Aging of Polymer Blends. In Polymer Blends Handbook, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1357–1394. [Google Scholar] [CrossRef]
- Surana, R.; Pyne, A.; Rani, M.; Suryanarayanan, R. Measurement of enthalpic relaxation by differential scanning calorimetry—Effect of experimental conditions. Thermochim. Acta 2005, 433, 173–182. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Koga, N.; Schick, C. Foreword. In Handbook of Thermal Analysis and Calorimetry; Elsevier: Amsterdam, The Netherlands, 2018; Volume 6. [Google Scholar] [CrossRef]
- Orellana, J.; Pastor, Y.; Calle, F.; Pastor, J. Influence of HRGO Nanoplatelets on Behaviour and Processing of PMMA Bone Cement for Surgery. Polymers 2021, 13, 2027. [Google Scholar] [CrossRef]
- Niaounakis, M.; Kontou, E.; Xanthis, M. Effects of aging on the thermomechanical properties of poly(lactic acid). J. Appl. Polym. Sci. 2011, 119, 472–481. [Google Scholar] [CrossRef]
- Williams, G.; Watts, D.C.; Dev, S.B.; North, A.M. Further considerations of non symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1971, 67, 1323–1335. [Google Scholar] [CrossRef]
- Van Krevelen, D. Properties of Polymers; Elsevier: New York, NY, USA, 1997; p. 875. [Google Scholar]
- Smith, K.E.; Parks, S.S.; Hyjek, M.A.; Downey, S.E.; Gall, K. The effect of the glass transition temperature on the toughness of photopolymerisable (meth)acrylate networks under physiological conditions. Polymer 2009, 50, 5112. [Google Scholar] [CrossRef]
Method | Ageing Temperature (°C) | Frozen with Desiccant | Defrosted with Desiccant |
---|---|---|---|
1900 | 19 ± 3 | - * | - * |
−2400 | −24 ± 1 | No | No |
−2401 | −24 ± 1 | No | Yes |
−2410 | −24 ± 1 | Yes | No |
−2411 | −24 ± 1 | Yes | Yes |
Method | Ageing (Days) | Tg (°C) | TER (°C) | ΔHER (J/g) | Tcc (°C) | ΔHcc (J/g) | Tm (°C) | ΔHm (J/g) | Xc% |
---|---|---|---|---|---|---|---|---|---|
1900 | 1 | 53.9 | 56.8 | 0.0 | 124 | −3.1 | 150 | 3.7 | <1.5 |
1900 | 3 | 55.9 | 58.8 | 0.7 | 125 | −2.1 | 150 | 2.8 | <1.5 |
1900 | 7 | 57.2 | 59.9 | 1.3 | 124 | −2.7 | 150 | 3.7 | <1.5 |
1900 | 240 | 61.0 | 63.2 | 6.1 | 118 | −6.7 | 149 | 5.1 | <1.5 |
−2400 | 8 | 52.1 | 56.9 | 0.0 | 123 | −3.6 | 150 | 3.6 | <1.5 |
−2400 | 273 | 51.7 | 56.1 | 0.0 | 119 | −4.1 | 150 | 4.7 | <1.5 |
−2401 | 8 | 52.6 | 57.6 | 0.0 | 124 | −1.9 | 150 | 2.3 | <1.5 |
−2410 | 8 | 53.7 | 58.3 | 0.0 | 122 | −2.8 | 151 | 3.3 | <1.5 |
−2411 | 8 | 53.6 | 58.2 | 0.0 | 125 | −2.0 | 151 | 2.3 | <1.5 |
−2411 | 273 | 51.5 | 56.2 | 0.0 | 125 | −2.6 | 151 | 3.5 | <1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orellana-Barrasa, J.; Ferrández-Montero, A.; Ferrari, B.; Pastor, J.Y. Natural Ageing of PLA Filaments, Can It Be Frozen? Polymers 2022, 14, 3361. https://doi.org/10.3390/polym14163361
Orellana-Barrasa J, Ferrández-Montero A, Ferrari B, Pastor JY. Natural Ageing of PLA Filaments, Can It Be Frozen? Polymers. 2022; 14(16):3361. https://doi.org/10.3390/polym14163361
Chicago/Turabian StyleOrellana-Barrasa, Jaime, Ana Ferrández-Montero, Begoña Ferrari, and José Ygnacio Pastor. 2022. "Natural Ageing of PLA Filaments, Can It Be Frozen?" Polymers 14, no. 16: 3361. https://doi.org/10.3390/polym14163361
APA StyleOrellana-Barrasa, J., Ferrández-Montero, A., Ferrari, B., & Pastor, J. Y. (2022). Natural Ageing of PLA Filaments, Can It Be Frozen? Polymers, 14(16), 3361. https://doi.org/10.3390/polym14163361