Time/Molecular Weight Superposition to Describe the Behavior of Controlled-Rheology Polypropylenes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Principle of Time/Molecular Weight Superposition
3.1.1. The Case of a Homopolymer
3.1.2. The Case of a Copolymer
3.2. Validation of the Data in the Literature
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kowalski, R.C. Controlled rheology of PP resins. In History of Polyolefins; Seymour, F.B., Cheng, T., Eds.; Springer: Dordrecht, Germany, 1986; pp. 307–318. [Google Scholar]
- Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A.E. Production of Controlled-Rheology Polypropylene resins by peroxide promoted degradation during extrusion. Polym. Eng. Sci. 1988, 28, 170–180. [Google Scholar] [CrossRef]
- Fernanda, M.; Coutinho, B.; Marisa, C.; Rocha, G. Polypropylene controlled degradation. In Concise Polymeric Encyclopedia; Salamon, J.C., Ed.; CRC Press: London, UK, 1999; pp. 6588–6594. [Google Scholar]
- Hammerschmid, K.; Gahleitner, M. Controlled rheology polypropylene. In Polypropylene: An A-Z Reference; Karger-Kocsis, J., Ed.; Kluwer: Dordrecht, Germany, 1999; pp. 95–103. [Google Scholar]
- Azizi, H.; Ghasemi, I. Reactive extrusion of polypropylene: Production of controlled-rheology polypropylene (CRPP) by peroxide promoted degradation. Polym. Test. 2004, 23, 137–143. [Google Scholar] [CrossRef]
- Scorah, M.J.; Zhu, S.; Psarreas, A.; McManus, N.T.; Dhib, R.; Tzoganakis, C.; Penlidis, A. Peroxide-controlled degradation of polypropylene using a tetra-functional initiator. Polym. Eng. Sci. 2009, 49, 1760–1766. [Google Scholar] [CrossRef]
- Iedema, P.D.; Remerie, K.; van der Ham, M.; Biemond, E.; Tacx, J. Controlled peroxide-induced degradation of polypropylene in a twin-screw extruder: Change of molecular weight distribution under conditions controlled by micromixing. Chem. Eng. Sci. 2011, 66, 5474–5486. [Google Scholar] [CrossRef]
- Nie, S.; Tzoganakis, C. Taylor-made controlled-rheology polypropylenes from metallocene and Ziegler-Natta resins. Polym. Eng. Sci. 2019, 59, 1114–1121. [Google Scholar] [CrossRef]
- Suwanda, D.; Lew, R.; Balke, S.T. Reactive extrusion of polypropylene PP: Degradation kinetics modeling. J. Appl. Polym. Sci. 1988, 35, 1019–1032. [Google Scholar] [CrossRef]
- Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A.E. Modelling of the peroxide degradation of polypropylene. Int. Polym. Process 1988, 3, 141–150. [Google Scholar] [CrossRef]
- Tzoganakis, C.; Vlachopoulos, J.; Hamielec, A.E.; Shinozaki, D.M. Effect of molecular weight distribution on the rheological and mechanical properties of polypropylene. Polym. Eng. Sci. 1989, 29, 390–396. [Google Scholar] [CrossRef]
- Barakos, G.; Mitsoulis, E.; Tzoganakis, C.; Kajiwara, T. Rheological characterization of controlled-rheology polypropylenes using integral constitutive equations. J. Appl. Polym. Sci. 1996, 59, 543–556. [Google Scholar] [CrossRef]
- Tzoganakis, C. A rheological evaluation of linear and branched controlled-rheology polypropylenes. Can. J. Chem. Eng. 1994, 72, 749–754. [Google Scholar] [CrossRef]
- Carrot, C.; Revenu, P.; Guillet, J. Rheological behavior of degraded polypropylene melts: From MWD to dynamic moduli. J. Appl. Polym. Sci. 1996, 61, 1887–1897. [Google Scholar] [CrossRef]
- Azizi, H.; Ghasemi, I.; Karrabi, M. Controlled-peroxide degradation of polypropylene: Rheological properties and prediction of MWD from rheological data. Polym. Test. 2008, 27, 548–554. [Google Scholar] [CrossRef]
- Berzin, F.; Vergnes, B.; Delamare, L. Rheological behavior of controlled-rheology polypropylenes obtained by peroxide-promoted degradation during extrusion: Comparison between homopolymer and copolymer. J. Appl. Polym. Sci. 2001, 80, 1243–1252. [Google Scholar] [CrossRef]
- Berzin, F.; Vergnes, B.; Dufossé, P.; Delamare, L. Modelling of peroxide initiated controlled degradation of polypropylene in a twin-screw extruder. Polym. Eng. Sci. 2000, 40, 344–356. [Google Scholar] [CrossRef]
- He, G.; Tzoganakis, C. A UV-initiated reactive extrusion process for production of controlled-rheology polypropylene. Polym. Eng. Sci. 2011, 51, 151–157. [Google Scholar] [CrossRef]
- Gahleitner, M. Melt rheology of polyolefins. Prog. Proc. Sci. 2001, 26, 895–944. [Google Scholar] [CrossRef]
- Tang, Y.; Tzoganakis, C.; Hamielec, A.E.; Vlachopoulos, J. Peroxide crosslinking of LLDPE during reactive extrusion. Adv. Polym. Technol. 1989, 9, 217–226. [Google Scholar] [CrossRef]
- Ramos, V.D.; da Costa, H.M.; Pereira, A.O.; Rocha, M.C.G.; de Gomes, S.A. Study of low concentrations of dicumyl peroxide on the molecular structure modification of LLDPE by reactive extrusion. Polym. Test. 2004, 23, 949–955. [Google Scholar] [CrossRef]
- Berzin, F. Etude expérimentale et modélisation d’une opération d’extrusion réactive. Ph.D. Thesis, Ecole des Mines de Paris, Sophia-Antipolis, France, 1998. [Google Scholar]
- Wood-Adams, P.; Costeux, S. Thermorheological behavior of polyethylene: Effects of microstructure and long chain branching. Macromolecules 2001, 34, 6281–6290. [Google Scholar] [CrossRef]
- Stadler, F.J.; Gabriel, C.; Münstedt, H. Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol. Chem. Phys. 2007, 208, 2449–2454. [Google Scholar] [CrossRef]
- Vinogradov, G.V.; Malkin, A.Y. Rheological properties of polymer melts. J. Polym. Sci. Part A-2 1966, 4, 135–154. [Google Scholar] [CrossRef]
- Minoshima, W.; White, J.L.; Spruiell, J.E. Experimental investigation of the influence of molecular weight distribution on the rheological properties of polypropylene melts. Polym. Eng. Sci. 1980, 20, 1166–1176. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Montfort, J.P.; Marin, G.; Monge, P. Molecular weight dependence of the viscoelastic properties of linear polymers: The coupling of reptation and tube-renewal effects. Macromolecules 1986, 19, 1979–1988. [Google Scholar] [CrossRef]
- Zhang, X. Chemical Modifications of Poly(1-Butene) Resins. Master’s Thesis, University of Waterloo, Waterloo, IA, Canada, 2019. [Google Scholar]
- Swart, M.; Van Reenen, A.J. The effect of controlled degradation on the molecular characteristics of heterophasic ethylene–propylene copolymers. J. Appl. Polym. Sci. 2015, 132, 41783. [Google Scholar] [CrossRef]
- Magagula, S.I.; Ndiripo, A.; Van Reenen, A.J. Heterophasic ethylene-propylene copolymers: New insights on complex microstructure by combined molar mass fractionation and high temperature liquid chromatography. Polym. Degrad. 2020, 171, 109022. [Google Scholar] [CrossRef]
- Zhang, X.; Tzoganakis, C.; Zatloukal, M. Chemical modifications of poly(1-butene) resins through reactive processing. Polym. Eng. Sci. 2020, 60, 1437–1445. [Google Scholar] [CrossRef]
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Peroxide (wt%) | 0 | 0.01 | 0.02 | 0.06 | 0.10 | 0.15 | 0.25 | 0.35 | 0.50 |
Mw (kg/mol) | 301.6 | 209.3 | 190.5 | 135.6 | 114.8 | 104.9 | 87.5 | 78.8 | 63.0 |
Mn (kg/mol) | 47.1 | 45.9 | 40.6 | 36.2 | 34.7 | 33.6 | 29.1 | 27.2 | 25.2 |
Mz (kg/mol) | 1125.0 | 482.3 | 425.8 | 278.1 | 224.8 | 202.6 | 175.5 | 148.3 | 112.6 |
PDI (-) | 6.4 | 4.6 | 4.7 | 3.7 | 3.3 | 3.1 | 3.0 | 2.9 | 2.5 |
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Peroxide (wt%) | 0 | 0.01 | 0.02 | 0.06 | 0.10 | 0.15 | 0.25 | 0.35 | 0.50 |
Mw (kg/mol) | 256.1 | 210.4 | 181.4 | 168.9 | 150.1 | 116.9 | 104.7 | 89.3 | 74.4 |
Mn (kg/mol) | 47.1 | 44.8 | 41.8 | 36.7 | 36.1 | 30.0 | 29.8 | 24.0 | 21.8 |
Mz (kg/mol) | 850.5 | 559.7 | 456.0 | 612.3 | 488.9 | 285.4 | 305.0 | 218.9 | 231.7 |
PDI (-) | 5.4 | 4.7 | 4.3 | 4.6 | 4.2 | 3.9 | 3.5 | 3.7 | 3.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berzin, F.; Vergnes, B. Time/Molecular Weight Superposition to Describe the Behavior of Controlled-Rheology Polypropylenes. Polymers 2022, 14, 3398. https://doi.org/10.3390/polym14163398
Berzin F, Vergnes B. Time/Molecular Weight Superposition to Describe the Behavior of Controlled-Rheology Polypropylenes. Polymers. 2022; 14(16):3398. https://doi.org/10.3390/polym14163398
Chicago/Turabian StyleBerzin, Françoise, and Bruno Vergnes. 2022. "Time/Molecular Weight Superposition to Describe the Behavior of Controlled-Rheology Polypropylenes" Polymers 14, no. 16: 3398. https://doi.org/10.3390/polym14163398
APA StyleBerzin, F., & Vergnes, B. (2022). Time/Molecular Weight Superposition to Describe the Behavior of Controlled-Rheology Polypropylenes. Polymers, 14(16), 3398. https://doi.org/10.3390/polym14163398