Increase the Surface PANI Occupancy of Electrospun PMMA/PANI Fibers: Effect of the Electrospinning Parameters on Surface Segregation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrospinning with Controlled Process Parameters
2.3. Morphological Characterization and Spectral Analysis
3. Results and Discussion
3.1. Effects of Solution Composition
3.1.1. Mass Fraction of PMMA
3.1.2. PANI/PMMA Mass Ratio
3.2. Effects of Process Parameters
3.2.1. Applied Voltage
3.2.2. Tip to Collector Distance
3.3. Effects of Ambient Parameters
3.3.1. Working Temperature
3.3.2. Humidity
3.3.3. Solvent Concentration
3.4. Systematic Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balakrishnan, N.K.; Ostheller, M.-E.; Aldeghi, N.; Schmitz, C.; Groten, R.; Seide, G. Pilot-Scale Electrospinning of PLA Using Biobased Dyes as Multifunctional Additives. Polymers 2022, 14, 2989. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Um, I. Effect of Relative Humidity on the Electrospinning Performance of Regenerated Silk Solution. Polymers 2021, 13, 2479. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, H.; Kim, M.; Park, Y.C. Coloration and Chromatic Sensing Behavior of Electrospun Cellulose Fibers with Curcumin. Nanomaterials 2021, 11, 222. [Google Scholar] [CrossRef] [PubMed]
- Alshafei, F.H.; Simonetti, D.A. Targeted morphology of copper oxide based electrospun nanofibers. Chem. Eng. Sci. 2020, 219, 115547. [Google Scholar] [CrossRef]
- Lee, J.K.Y.; Chen, N.; Peng, S.; Li, L.; Tian, L.; Thakor, N.; Ramakrishna, S. Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Prog. Polym. Sci. 2018, 86, 40–84. [Google Scholar] [CrossRef]
- Silva, D.B.D.S.; Lindembergue, P.C., Jr.; de Aguiar, M.F. Preparation and characterization of nanofibers of polyvinyl alcohol/polyaniline-montmorillonite clay. J. Mol. Liq. 2018, 272, 1070–1076. [Google Scholar] [CrossRef]
- Zhu, M.; Hua, D.; Pan, H.; Wang, F.; Manshian, B.; Soenen, S.J.; Xiong, R.; Huang, C. Green electrospun and crosslinked poly(vinyl alcohol)/poly(acrylic acid) composite membranes for antibacterial effective air filtration. J. Colloid Interface Sci. 2018, 511, 411–423. [Google Scholar] [CrossRef]
- Sabetzadeh, N.; Gharehaghaji, A.A.; Javanbakht, M. Porous PAN micro/nanofiber separators for enhanced lithium-ion battery performance. Solid State Ion. 2018, 325, 251–257. [Google Scholar] [CrossRef]
- Bae, S.; DiBalsi, M.J.; Meilinger, N.; Zhang, C.Q.; Beal, E.; Korneva, G.; Brown, R.O.; Kornev, K.G.; Lee, J.S. Heparin-Eluting Electrospun Nanofiber Yarns for Antithrombotic Vascular Sutures. ACS Appl. Mater. Interfaces 2018, 10, 8426–8435. [Google Scholar] [CrossRef]
- Cadafalch Gazquez, G.; Smulders, V.; Veldhuis, S.A.; Wieringa, P.; Moroni, L.; Boukamp, B.A.; Ten Elshof, J.E. Influence of Solution Properties and Process Parameters on the Formation and Morphology of YSZ and NiO Ceramic Nanofibers by Electrospinning. Nanomaterials 2017, 7, 16. [Google Scholar] [CrossRef]
- Kim, W.-T.; Park, D.-C.; Yang, W.-H.; Cho, C.-H.; Choi, W.-Y. Effects of Electrospinning Parameters on the Microstructure of PVP/TiO2 Nanofibers. Nanomaterials 2021, 11, 1616. [Google Scholar] [CrossRef] [PubMed]
- Levitt, A.S.; Vallett, R.; Dion, G.; Schauer, C.L. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. J. Appl. Polym. Sci. 2018, 135. [Google Scholar] [CrossRef]
- Moheman, A.; Alam, M.S.; Mohammad, A. Recent trends in electrospinning of polymer nanofibers and their applications in ultra thin layer chromatography. Adv. Colloid Interface Sci. 2016, 229, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Asmatulu, R.; Veisi, Z.; Uddin, N.; Mahapatro, A. Highly Sensitive and Reliable Electrospun Polyaniline Nanofiber Based Biosensor as a Robust Platform for COX-2 Enzyme Detections. Fibers Polym. 2019, 20, 966–974. [Google Scholar] [CrossRef]
- Low, K.; Horner, C.B.; Li, C.; Ico, G.; Bosze, W.; Myung, N.V.; Nam, J. Composition-dependent sensing mechanism of electrospun conductive polymer composite nanofibers. Sens. Actuators B Chem. 2015, 207, 235–242. [Google Scholar] [CrossRef]
- Ewaldz, E.; Brettmann, B.K. Molecular Interactions in Electrospinning: From Polymer Mixtures to Supramolecular Assemblies. ACS Appl. Polym. Mater. 2019, 1, 298–308. [Google Scholar] [CrossRef]
- Qu, C.; Zhao, P.; Wu, C.; Zhuang, Y.; Liu, J.; Li, W.; Liu, Z.; Liu, J. Electrospun PAN/PANI fiber film with abundant active sites for ultrasensitive trimethylamine detection. Sens. Actuators B Chem. 2021, 338, 129822. [Google Scholar] [CrossRef]
- Fischer, T.; Möller, M.; Singh, S. Approach to Obtain Electrospun Hydrophilic Fibers and Prevent Fiber Necking. Macromol. Mater. Eng. 2019, 304, 1900565. [Google Scholar] [CrossRef]
- Chen, J.; Zhuang, H.; Zhao, J.; Gardella, J.A. Solvent effects on polymer surface structure. Surf. Interface Anal. 2001, 31, 713–720. [Google Scholar] [CrossRef]
- Kurusu, R.S.; Demarquette, N.R. Surface properties evolution in electrospun polymer blends by segregation of hydrophilic or amphiphilic molecules. Eur. Polym. J. 2017, 89, 129–137. [Google Scholar] [CrossRef]
- Ran, F.; Nie, S.; Lu, Y.; Cheng, C.; Wang, D.; Sun, S.; Zhao, C. Comparison of surface segregation and anticoagulant property in block copolymer blended evaporation and phase inversion membranes. Surf. Interface Anal. 2012, 44, 819–824. [Google Scholar] [CrossRef]
- Mehta, S.B.; Kumar, A.; Radhakrishna, M. Role of confinement, molecular connectivity and flexibility in entropic driven surface segregation of polymer-colloid mixtures. Soft Matter 2019, 15, 6495–6503. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Bai, C.; Wang, Y.; Fan, Z.; Yuan, Y.; Jiao, H. Highly Crosslinked Conductive Polymer Nanofibrous Films for High-Rate Solid-State Supercapacitors and Electromagnetic Interference Shielding. Adv. Mater. Interfaces 2022, 9, 2102115. [Google Scholar] [CrossRef]
- Duan, X.; Duan, Z.; Zhang, Y.; Liu, B.; Li, X.; Zhao, Q.; Yuan, Z.; Jiang, Y.; Tai, H. Enhanced NH3 sensing performance of polyaniline via a facile morphology modification strategy. Sens. Actuators B Chem. 2022, 369, 132302. [Google Scholar] [CrossRef]
- Tsai, Y.-T.; Maggay, I.V.; Venault, A.; Lin, Y.-F. Fluorine-free and hydrophobic/oleophilic PMMA/PDMS electrospun nanofibrous membranes for gravity-driven removal of water from oil-rich emulsions. Sep. Purif. Technol. 2021, 279, 119720. [Google Scholar] [CrossRef]
- Hotaling, N.A.; Bharti, K.; Kriel, H.; Simon, C.G. DiameterJ: A validated open source nanofiber diameter measurement tool. Biomaterials 2015, 61, 327–338. [Google Scholar] [CrossRef]
- Aragón, F.H.; Coaquira, J.A.H.; Hidalgo, P.; da Silva, S.W.; Brito, S.L.M.; Gouvêa, D.; Morais, P.C. Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy. J. Raman Spectrosc. 2011, 42, 1081–1086. [Google Scholar] [CrossRef]
- Giles, S.L.; Heller, N.W.M.; Clayton, C.R.; Walker, M.E.; Wytiaz, M.J.; Wynne, J.H. Novel Methods of Producing Low-Reflectance Coatings Utilizing Synergistic Effects of Polymer Phase Separation. ACS Appl. Mater. Interfaces 2016, 8, 26251–26257. [Google Scholar] [CrossRef]
- Rodríguez, R.; Jiménez-Sandoval, S.; Estevez, M.; Vargas, S. Drying kinetics and segregation in a two-component anti-adherent coating studied by photoluminescence and Raman spectroscopies. J. Non-Cryst. Solids 2008, 354, 3623–3629. [Google Scholar] [CrossRef]
- Li, Y.; Ban, H.; Yang, M. Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sens. Actuators B Chem. 2016, 224, 449–457. [Google Scholar] [CrossRef]
- Shah, A.-U.A.; Holze, R. Spectroelectrochemistry of two-layered composites of polyaniline and poly(o-aminophenol). Electrochim. Acta 2008, 53, 4642–4653. [Google Scholar] [CrossRef]
- Chaurasia, S.; Rao, U.; Mishra, A.K.; Sijoy, C.; Mishra, V. Raman spectroscopy of poly (methyl methacrylate) under laser shock and static compression. J. Raman Spectrosc. 2020, 51, 860–870. [Google Scholar] [CrossRef]
- Kailasa, S.; Reddy, M.S.B.; Maurya, M.R.; Rani, B.G.; Rao, K.V.; Sadasivuni, K.K. Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromol. Mater. Eng. 2021, 306, 2100410. [Google Scholar] [CrossRef]
- Zhang, H.; Xi, S.; Han, Y.; Liu, L.; Dong, B.; Zhang, Z.; Chen, Q.; Min, W.; Huang, Q.; Li, Y.; et al. Determining electrospun morphology from the properties of protein–polymer solutions. Soft Matter 2018, 14, 3455–3462. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, R.; Cahill, P.; McGuinness, G. Effect of electrospinning parameters on the mechanical and morphological characteristics of small diameter PCL tissue engineered blood vessel scaffolds having distinct micro and nano fibre populations—A DOE approach. Polym. Test. 2021, 96, 107119. [Google Scholar] [CrossRef]
- Shao, H.; Fang, J.; Wang, H.; Lin, T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Adv. 2015, 5, 14345–14350. [Google Scholar] [CrossRef]
- Topuz, F.; Uyar, T. Electrospinning of Cyclodextrin Nanofibers: The Effect of Process Parameters. J. Nanomater. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaun, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the beta Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef]
- Szewczyk, P.K.; Stachewicz, U. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Adv. Colloid Interface Sci. 2020, 286, 102315. [Google Scholar] [CrossRef]
- Cheng, M.; Qin, Z.; Hu, S.; Yu, H.; Zhu, M. Use of electrospinning to directly fabricate three-dimensional nanofiber stacks of cellulose acetate under high relative humidity condition. Cellulose 2016, 24, 219–229. [Google Scholar] [CrossRef]
- Cozza, E.S.; Monticelli, O.; Marsano, E.; Cebe, P. On the electrospinning of PVDF: Influence of the experimental conditions on the nanofiber properties. Polym. Int. 2012, 62, 41–48. [Google Scholar] [CrossRef]
Investigated Parameters | Values | |
---|---|---|
Solution composition | PMMA mass fraction (wt%) | 11, 12, 13, 14, 15 |
PANI/PMMA mass ratio | 0.2, 0.3, 0.4, 0.5, 0.6 | |
Process parameters | Applied voltage (kV) | 10, 12.5, 15, 17.5, 20 |
Tip-to-collector distance (cm) | 10, 13, 15, 16, 19 | |
Ambient parameters | Temperature (°C) | 20, 22, 25, 30, 32 |
Relative Humidity (%RH) | 20, 30, 45, 60, 70 | |
Solvent concentration (mg/m3) | 1.4, 60, 158 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, C.; Zhao, P.; Ren, Y.; Wu, C.; Liu, J. Increase the Surface PANI Occupancy of Electrospun PMMA/PANI Fibers: Effect of the Electrospinning Parameters on Surface Segregation. Polymers 2022, 14, 3401. https://doi.org/10.3390/polym14163401
Qu C, Zhao P, Ren Y, Wu C, Liu J. Increase the Surface PANI Occupancy of Electrospun PMMA/PANI Fibers: Effect of the Electrospinning Parameters on Surface Segregation. Polymers. 2022; 14(16):3401. https://doi.org/10.3390/polym14163401
Chicago/Turabian StyleQu, Chen, Peng Zhao, Yifan Ren, Chuandong Wu, and Jiemin Liu. 2022. "Increase the Surface PANI Occupancy of Electrospun PMMA/PANI Fibers: Effect of the Electrospinning Parameters on Surface Segregation" Polymers 14, no. 16: 3401. https://doi.org/10.3390/polym14163401
APA StyleQu, C., Zhao, P., Ren, Y., Wu, C., & Liu, J. (2022). Increase the Surface PANI Occupancy of Electrospun PMMA/PANI Fibers: Effect of the Electrospinning Parameters on Surface Segregation. Polymers, 14(16), 3401. https://doi.org/10.3390/polym14163401