Dry-Matter Loss and Changes in the Chemical Composition of Spruce Wood after Long-Term Storing in the Form of Roundwood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Composition of Spruce Wood
2.2. Fourier-Transform Infrared Spectroscopy (FTIR)
3. Results and Discussion
Fourier-Transform Infrared Spectroscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anerud, E.; Krigstin, S.; Routa, J.; Brännström, H.; Arshadi, M.; Helmeste, C.; Bergström, D.; Egnell, G. Dry Matter Losses During Biomass Storage Measures to Minimize Feedstock Degradation; IEA Bioenergy: Paris, France, 2019; Available online: https://www.ieabioenergy.com/wp-content/uploads/2020/01/EIA-Dry-Matter-Loss_Final.pdf (accessed on 5 September 2021).
- Golser, M.; Pichler, W.; Hader, F. Energieholztrocknung; Holzforschung: Vienna, Austria, 2005; Available online: https://www.forstholzpapier.at/images/FHP-Arbeitskreise_/AK_Energie/Energieholztrocknung_Endbericht_2005.pdf (accessed on 23 September 2021).
- Reinprecht, L. Wood Deterioration, Protection and Maintenance, 1st ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Slováčková, B.; Schmidtová, J.; Hrčka, R.; Mišíková, O. Diffusion coefficient and equilibrium moisture content of different wood species degraded with Trametes versicolor. BioResources 2021, 16, 2570–2588. [Google Scholar] [CrossRef]
- Sixta, H. Handbook of Pulp; Wiley–VCH: Weinheim, Germany, 2006. [Google Scholar] [CrossRef]
- Pelit, H.; Alkan, A.; Yalcin, M. Decay Resistance and Color Change of Pine and Beech Wood Impregnated with R. Luteum and R. Ponticum Plant Extracts. Drv. Ind. 2021, 72, 353–363. [Google Scholar] [CrossRef]
- Nilsson, B.; Blom, Å.; Thörnqvist, T. The influence of two different handling methods on the moisture content and composition of logging residues. Biomass Bioenergy 2013, 52, 34–42. [Google Scholar] [CrossRef]
- Chovanec, D.; Korytárová, O.; Čunderlík, I. Wood texture and structure. Edičné Stred. TU Zvolene 1992, 168. (In Slovak) [Google Scholar]
- Čunderlík, I. Wood structure. Vydav. TU Zvolene 2009, 135. (In Slovak) [Google Scholar]
- Millers, M. The proportion of heartwood in conifer (Pinus sylvestris L., Picea abies [L.] H. Karst.) trunks and its influence on trunk wood moisture. J. For. Sci. 2013, 59, 295–300. [Google Scholar] [CrossRef]
- He, X.; Lau, A.K.; Sokhansanj, S.; Lim, C.J.; Bi, X.T.; Melin, S. Investigating gas emissions and dry matter loss from stored biomass residues. Fuel 2014, 134, 159–165. [Google Scholar] [CrossRef]
- He, X.; Lau, A.K.; Sokhansanj, S. Effect of Moisture on Gas Emissions from Stored Woody Biomass. Energies 2020, 13, 128. [Google Scholar] [CrossRef]
- Gigler, J.K.; van Loon, W.K.P.; van den Berg, J.V.; Sonneveld, C.; Meerdink, G. Natural wind drying of willow stems. Biomass Bioenergy 2000, 19, 153–163. [Google Scholar] [CrossRef]
- Jensen, P.D.; Mattsson, J.E.; Kofman, P.D.; Klausner, A. Tendency of wood fuels from whole trees, logging residues and roundwood to bridge over openings. Biomass Bioenergy 2004, 26, 107–113. [Google Scholar] [CrossRef]
- Salin, J.G.; Gjerdrum, P. Modelling air drying of wooden poles. In Proceedings of the EDG Conference, Bled, Slovenia, 23 April 2009; pp. 78–86. [Google Scholar]
- Erber, G.; Kanzian, C.; Stampfer, K. Predicting moisture content in a pine logwood pile for energy purposes. Silva Fenn. 2012, 46, 555–567. [Google Scholar] [CrossRef]
- Routa, J.; Kolström, M.; Ruotsalainen, J.; Sikanen, L. Validation of prediction models for estimating the moisture content of logging residues during storage. Biomass Bioenergy 2016, 94, 85–93. [Google Scholar] [CrossRef]
- Babiak, M. Wood-Water System; VŠLD: Zvolen, Slovakia, 1990. [Google Scholar]
- Sydor, M.; Wieloch, G. Construction Properties of Wood Taken into Consideration in Engenering Practice. Właściwości Konstrukcyjne Drewna Uwzględniane w Praktyce Inżynierskiej. Drewno 2009, 52, 63–73. [Google Scholar]
- Assarsson, A.; Croon, I.; Frisk, E. Outside chip storage (OCS). Sven. Papp. 1970, 73, 441–493. [Google Scholar]
- Routa, J.; Kolström, M.; Sikanen, L. Dry matter losses and their economic significance in forest energy procurement. Int. J. For. Eng. 2018, 29, 53–62. [Google Scholar] [CrossRef]
- Barontini, M.; Scarfone, A.; Spinelli, R.; Gallucci, F.; Santangelo, E.; Acampora, A.; Jirjis, R.; Civitarese, V.; Pari, P. Storage dynamics and fuel quality of poplar chips. Biomass Bioenergy 2014, 62, 17–25. [Google Scholar] [CrossRef]
- STN EN 490103; Drevo. Zisťovanie Vlhkosti pri Fyzikálnych a Mechanických Skúškach. Slovenská Technická Norma: Bratislava, Slovakia, 1979. (In Slovak)
- STN EN 490108; Drevo. Zisťovanie Hustoty pri Fyzikálnych a Mechanických Skúškach. Slovenská Technická Norma: Bratislava, Slovakia, 1979. (In Slovak)
- ASTM D1107-96; Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM International: West Conshohocken, PA, USA, 2007.
- Wise, L.E.; Murphy, M.; D’Addieco, A.A. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Pap. Trade J. 1946, 122, 35–44. [Google Scholar]
- Seifert, V.K. Űber ein neues Verfahren zur schnell Bestimmung der rein-Cellulose [About a new method for rapid determination of pure cellulose]. Das Pap. 1956, 10, 301–306. [Google Scholar]
- ASTM D1106-96; Standard Test Method for Acid-Insoluble Lignin in Wood. ASTM International: West Conshohocken, PA, USA, 2013.
- Tripathi, S.; Mishra, O.P.; Gangwar, A.; Chakrabarti, S.K.; Varadhan, R. Impact of wood storage on pulp and paper making properties. IPPTA J. 2011, 23, 161–164. [Google Scholar]
- Jeníček, L.; Neškudla, M.; Malaťák, J.; Velebil, J.; Passian, L. Spruce and Barley Elemental and Stochiometric Analysis Affected by the Impact of Pellet Production and Torrefaction. Acta Technologica Agric. 2021, 24, 166–172. [Google Scholar] [CrossRef]
- Malaťáková, J.; Jankovský, M.; Malaťák, J.; Velebil, J.; Tamelová, B.; Gendek, A.; Aniszewska, M. Evaluation of small-scale gasification for CHP for wood from salvage logging in the Czech Republic. Forests 2021, 12, 1448. [Google Scholar] [CrossRef]
- Ramnath, L.; Sithole, B.; Govinden, R. The effects of wood storage on the chemical composition and indigenous microflora of Eucalyptus species used in the pulping industry. BioResources 2018, 13, 86–103. [Google Scholar] [CrossRef]
- Günther, B.; Starke, N.; Meurer, A.; Bues, C.T.; Fischer, S.; Bremer, M.; Freese, M. Impact of Storage Method on the Chemical and Physical Properties of Poplar Wood from Short-Rotation Coppice Stored for a Period of 9 Months. Bioenerg. Res. 2021, 4, 469–481. [Google Scholar] [CrossRef]
- Giesel, G.; Brand, M.A.; Milagres, F.R.; Damasio, R.A.P. Effect of the log storage of Pinus taeda L. on the quality of kraft pulp. Floresta 2020, 50, 1844–1853. [Google Scholar] [CrossRef]
- Li, J.; Li, B.; Zhang, X. Comparative studies of heat degradation between larch lignin and Manchurian ash lignin. Polym. Degrad. Stabil. 2002, 78, 279–285. [Google Scholar] [CrossRef]
- Kačík, F.; Luptáková, J.; Šmíra, P.; Nasswettrová, A.; Kačíková, D.; Vacek, V. Chemical alterations of pine wood lignin during heat sterilization. BioResources 2016, 11, 3442–3452. [Google Scholar] [CrossRef]
- Müller, G.; Schöpper, C.; Vos, H.; Kharazipour, A.P.; Polle, A. FTIR-ATR spectroscopic analyses of changes in wood properties during particle and fibreboard production of hard and softwood trees. BioResources 2009, 4, 49–71. [Google Scholar] [CrossRef]
- Esteves, B.; Velez Marques, A.; Domingos, I.; Pereira, H. Chemical changes of heat treated Pine and Eucalypt wood monitored by FTIR. Maderas-Cienc. Technol. 2013, 15, 245–258. [Google Scholar] [CrossRef]
- Li, M.Y.; Cheng, S.C.; Li, D.; Wang, S.N.; Huang, A.M.; Sun, S.Q. Structural characterization of steam-heat treated Tectona grandis wood analyzed by FT-IR and 2D-IR correlation spectroscopy. Chin. Chem Lett. 2015, 26, 221–225. [Google Scholar] [CrossRef]
- Tjeerdsma, B.; Militz, H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh Werkst. 2005, 63, 102–111. [Google Scholar] [CrossRef]
- Jonoobi, M.; Harun, J.; Mathew, A.P.; Hussein, M.Z.B.; Oksman, K. Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 2010, 17, 299–307. [Google Scholar] [CrossRef]
- Poletto, M.; Ornaghi Júnior, H.L.; Zattera, A.J. Native cellulose: Structure, characterization and thermal properties. Materials 2014, 7, 6105–6119. [Google Scholar] [CrossRef] [PubMed]
- Cichosz, S.; Masek, A. IR Study on Cellulose with the Varied Moisture Contents: Insight into the Supramolecular Structure. Materials 2020, 13, 4573. [Google Scholar] [CrossRef] [PubMed]
- Sangian, H.F.; Sehe, M.R.; Tamuntuan, G.H.; Zulnazri, Z. Utilization of Saline Solutions in the Modification of Lignocellulose from Champaca Wood. J. Korean Wood Sci. Technol. 2018, 46, 368–379. [Google Scholar] [CrossRef]
Time of Storage [Month] | 0 | 2.0 | 4.0 | 6.0 |
---|---|---|---|---|
DMLj | 0 | 0.0237 | 0.0185 | 0.00313 |
TCI 1370 cm−1/2900 cm−1 | LOI 1423 cm−1/894 cm−1 | |
---|---|---|
Harvesting in December | 0.625 | 1.000 |
2 months of storage | 0.619 | 0.995 |
4 months of storage | 0.622 | 0.996 |
6 months of storage | 0.560 | 0.880 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrčka, R.; Kučerová, V.; Hönig, V. Dry-Matter Loss and Changes in the Chemical Composition of Spruce Wood after Long-Term Storing in the Form of Roundwood. Polymers 2022, 14, 3400. https://doi.org/10.3390/polym14163400
Hrčka R, Kučerová V, Hönig V. Dry-Matter Loss and Changes in the Chemical Composition of Spruce Wood after Long-Term Storing in the Form of Roundwood. Polymers. 2022; 14(16):3400. https://doi.org/10.3390/polym14163400
Chicago/Turabian StyleHrčka, Richard, Viera Kučerová, and Vladimír Hönig. 2022. "Dry-Matter Loss and Changes in the Chemical Composition of Spruce Wood after Long-Term Storing in the Form of Roundwood" Polymers 14, no. 16: 3400. https://doi.org/10.3390/polym14163400
APA StyleHrčka, R., Kučerová, V., & Hönig, V. (2022). Dry-Matter Loss and Changes in the Chemical Composition of Spruce Wood after Long-Term Storing in the Form of Roundwood. Polymers, 14(16), 3400. https://doi.org/10.3390/polym14163400