Phase-Inverted Copolymer Membrane for the Enhancement of Textile Supercapacitors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Preparation of Textile with a Polymer Membrane and Bending Experiment
2.3. Fabrication of Supercapacitor Electrodes
2.4. Textile Supercapacitor Assembly and Testing
2.5. Characterisation and Electrochemical Testing of Flexible Textile Supercapacitor
3. Results and Discussion
3.1. SEM Imaging
3.2. Porosity, Electrolyte Uptake and Ageing Test
3.3. Electrochemical Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Langenhove, L.V. Advances in Smart Medical Textiles: Treatments and Health Monitoring, 1st ed.; Elsevier: Waltham, MA, USA, 2015. [Google Scholar]
- Dias, T. Electronic Textiles: Smart Fabrics and Wearable Technology; Elsevier: Boston, MA, USA, 2015. [Google Scholar]
- Fernandez-Carames, T.M.; Fraga-Lamas, P. Towards the Internet of Smart Clothing: A Review on IoT Wearables and Garments for Creating Intelligent Connected E-Textiles. Electronics 2018, 7, 405. [Google Scholar] [CrossRef]
- Hillier, N.; Yong, S.; Beeby, S. The good, the bad and the porous: A review of carbonaceous materials for flexible supercapacitor applications. Energy Rep. 2020, 6, 148–156. [Google Scholar] [CrossRef]
- Chen, H.S.; Cong, T.N.; Yang, W.; Tan, C.Q.; Li, Y.L.; Ding, Y.L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. Mater. 2009, 19, 291–312. [Google Scholar] [CrossRef]
- Lv, T.; Liu, M.X.; Zhu, D.Z.; Gan, L.H.; Chen, T. Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors. Adv. Mater. 2018, 30, 1705489. [Google Scholar] [CrossRef]
- Jin, L.N.; Shao, F.; Jin, C.; Zhang, J.N.; Liu, P.; Guo, M.X.; Bian, S.W. High-performance textile supercapacitor electrode materials enhanced with three-dimensional carbon nanotubes/graphene conductive network and in situ polymerized polyaniline. Electrochim. Acta 2017, 249, 387–394. [Google Scholar] [CrossRef]
- Zhou, G.; Kim, N.R.; Chun, S.E.; Lee, W.; Um, M.K.; Chou, T.W.; Islam, M.F.; Byun, J.H.; Oh, Y. Highly porous and easy shapeable poly-dopamine derived graphene-coated single walled carbon nanotube aerogels for stretchable wire-type supercapacitors. Carbon 2018, 130, 137–144. [Google Scholar] [CrossRef]
- Wang, Y.M.; Wang, X.; Li, X.F.; Li, X.L.; Liu, Y.; Bai, Y.; Xiao, H.H.; Yuan, G.H. A High-Performance, Tailorable, Wearable, and Foldable Solid-State Supercapacitor Enabled by Arranging Pseudocapacitive Groups and MXene Flakes on Textile Electrode Surface. Adv. Funct. Mater. 2021, 31, 2008185. [Google Scholar] [CrossRef]
- Barczak, M.; Bandosz, T.J. Evaluation of nitrogen- and sulfur-doped porous carbon textiles as electrode materials for flexible supercapacitors. Electrochim. Acta 2019, 305, 125–136. [Google Scholar] [CrossRef]
- Yang, C.; Hu, L.; Zang, L.M.; Liu, Q.F.; Qiu, J.H.; Yang, J.; Qiao, X. High-Performance All-Solid-State Supercapacitor Based on Activated Carbon Coated Fiberglass Cloth Using Asphalt as Active Binder. J. Electrochem. Soc. 2020, 167, 20540. [Google Scholar] [CrossRef]
- Liu, K.; Yao, Y.; Lv, T.; Li, H.L.; Li, N.; Chen, Z.L.; Qian, G.J.; Chen, T. Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power Sources 2020, 446, 227355. [Google Scholar] [CrossRef]
- Guo, Z.G.; Zhao, J.; Sun, C.; Cai, Z.H.; Ge, F.Y. Flexible self-standing carbon fabric electrode prepared by using simple route for wearable applications. J. Mater. Sci. Mater. Electron. 2020, 31, 1554–1565. [Google Scholar] [CrossRef]
- Bharathidasan, P.; Subramaniam, T.; Chandini, D.; Sivakkumar, S.R.; Rajan, K.S.; Devaraj, S. Simultaneous Enhancement of Energy and Power Density of Reduced Graphene Oxide by the Effect of Dispersed Metal Oxide Nanoparticles in the Electrolyte. J. Electrochem. Soc. 2020, 167, 140524. [Google Scholar] [CrossRef]
- Wu, P.; Cheng, S.; Yao, M.H.; Yang, L.F.; Zhu, Y.Y.; Liu, P.P.; Xing, O.; Zhou, J.; Wang, M.K.; Luo, H.W.; et al. A Low-Cost, Self-Standing NiCo2O4@CNT/CNT Multilayer Electrode for Flexible Asymmetric Solid-State Supercapacitors. Adv. Funct. Mater. 2017, 27, 1702160. [Google Scholar] [CrossRef]
- Li, X.L.; Yuan, L.B.; Liu, R.; He, H.N.; Hao, J.N.; Lu, Y.; Wang, Y.M.; Liang, G.M.; Yuan, G.H.; Guo, Z.P. Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to Enable High-Performance Flexible All-Solid-State Supercapacitors. Adv. Energy Mater. 2021, 11, 2003010. [Google Scholar] [CrossRef]
- Yong, S.; Owen, J.; Beeby, S. Solid-State Supercapacitor Fabricated in a Single Woven Textile Layer for E-Textiles Applications. Adv. Eng. Mater. 2018, 20, 1700860. [Google Scholar] [CrossRef]
- Yong, S.; Hillier, N.; Beeby, S. The influence of textile substrate on the performance of multilayer fabric supercapacitors. J. Ind. Text. 2021, 50, 1397–1408. [Google Scholar] [CrossRef]
- Li, L.Y.; Lu, F.X.; Wang, C.; Zhang, F.L.; Liang, W.H.; Kuga, S.; Dong, Z.C.; Zhao, Y.; Huang, Y.; Wu, M. Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator. J. Mater. Chem. A 2018, 6, 24468–24478. [Google Scholar] [CrossRef]
- Liu, M.T.; Turcheniuk, K.; Fu, W.B.; Yang, Y.; Liu, M.; Yushin, G. Scalable, safe, high-rate supercapacitor separators based on the Al2O3 nanowire Polyvinyl butyral nonwoven membranes. Nano Energy 2020, 71, 104627. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Ma, S.; Li, X.; Yang, H.; Xu, Z.L. Porous carbonaceous composite derived from Mg(OH)2 pre-filled PAN based membrane for supercapacitor and dye adsorption application. J. Solid State Chem. 2019, 277, 493–501. [Google Scholar] [CrossRef]
- Arthi, R.; Jaikumar, V.; Muralidharan, P. Development of electrospun PVdF polymer membrane as separator for supercapacitor applications. Energy Sources Part A 2022, 44, 2294–2308. [Google Scholar] [CrossRef]
- Torvi, A.I.; Munavalli, B.B.; Naik, S.R.; Kariduraganavar, M.Y. Scalable fabrication of a flexible interdigital micro-supercapacitor device by in-situ polymerization of pyrrole into hybrid PVA-TEOS membrane. Electrochim. Acta 2018, 282, 469–479. [Google Scholar] [CrossRef]
- Na, R.Q.; Zhang, X.R.; Huo, P.F.; Du, Y.L.; Huo, G.Z.; Zhu, K.; Wang, G.B. High performance disulfonated poly(arylene ether sulfone)/poly(ethylene oxide) composite membrane used as a novel separator for supercapacitor with neutral electrolyte and activated carbon electrodes. High Perform. Polym. 2017, 29, 984–993. [Google Scholar] [CrossRef]
- Li, Z.M.; Wei, J.G.; Shan, F.; Yang, J.; Wang, X.L. PVDF/PMMA brushes membrane for lithium-ion rechargeable batteries prepared via preirradiation grafting technique. J. Polym. Sci. Polym. Phys. 2008, 46, 751–758. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Holda, A.K.; Vankelecom, I.F.J. Understanding and guiding the phase inversion process for synthesis of solvent resistant nanofiltration membranes. J. Appl. Polym. Sci. 2015, 132, 42130. [Google Scholar] [CrossRef]
- Meng, X.L.; Ji, Y.; Yu, G.H.; Zhai, Y.J. Preparation and Properties of Polyvinylidene Fluoride Nanocomposited Membranes based on Poly(N-Isopropylacrylamide) Modified Graphene Oxide Nanosheets. Polymers 2019, 11, 473. [Google Scholar] [CrossRef]
- Jang, J.; Oh, J.; Jeong, H.; Kang, W.; Jo, C. A Review of Functional Separators for Lithium Metal Battery Applications. Materials 2020, 13, 4625. [Google Scholar] [CrossRef]
- Peng, Y.; Yao, R.; Yang, W.S. A poly(amidoamine) nanoparticle cross-linked two-dimensional metal-organic framework nanosheet membrane for water purification. Chem. Commun. 2019, 55, 3935–3938. [Google Scholar] [CrossRef]
- Wang, B.H.; Thukral, A.; Xie, Z.Q.; Liu, L.M.; Zhang, X.N.; Huang, W.; Yu, X.G.; Yu, C.J.; Marks, T.J.; Facchetti, A. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 2020, 11, 2405. [Google Scholar] [CrossRef]
- Tomic, N.Z.; Marinkovic, A.D.; Veljovic, D.; Trifkovic, K.; Levic, S.; Radojevic, V.; Heinemann, R.J. A new approach to compatibilization study of EVA/PMMA polymer blend used as an optical fibers adhesive: Mechanical, morphological and thermal properties. Int. J. Adhes. Adhes. 2018, 81, 11–20. [Google Scholar] [CrossRef]
- Cheng, S.K.; Chen, C.Y. Mechanical properties and strain-rate effect of EVA/PMMA in situ polymerization blends. Eur. Polym. J. 2004, 40, 1239–1248. [Google Scholar] [CrossRef]
- Hillier, N.; Yong, S.; Beeby, S. Optimization of Carbon Electrodes for Solid-State E-Textile Supercapacitors. J. Phys. Conf. Ser. 2019, 1407, 12059. [Google Scholar] [CrossRef]
- Hillier, N.; Yong, S.; Cruden, A.; Beeby, S. Acetonitrile-Free Organic Electrolyte for Textile Supercapacitor Applications. J. Electrochem. Soc. 2021, 168, 80520. [Google Scholar] [CrossRef]
- Xu, D.M.; Teng, G.H.; Heng, Y.Q.; Chen, Z.Z.; Hu, D.Y. Eco-friendly and thermally stable cellulose film prepared by phase inversion as supercapacitor separator. Mater. Chem. Phys. 2020, 249, 122979. [Google Scholar] [CrossRef]
Polyester-Cotton/Thin (PC Thin) | Polyester-Cotton (PC) | Silk (S) | Polyester (P) | |
---|---|---|---|---|
Fibre types | Cotton and Polyester | Cotton and Polyester | Silk | Polyester |
Fibre diameter (µm) | 12 (Polyester) 15 (Cotton) | 12 (Polyester) 15 (Cotton) | ~8.3 | ~20 |
Ends per inch | 16.5 | 16.5 | 19.6 | 13.5 |
Picks per inch | 9.05 | 9.05 | 15.7 | 7.4 |
Textile original weight (mg·cm−2) | 16.3 | 27.1 | 4.45 | 23.4 |
Textile thickness (µm) | 150 | 250 | 50 | 244 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, S.; Hillier, N.; Beeby, S.P. Phase-Inverted Copolymer Membrane for the Enhancement of Textile Supercapacitors. Polymers 2022, 14, 3399. https://doi.org/10.3390/polym14163399
Yong S, Hillier N, Beeby SP. Phase-Inverted Copolymer Membrane for the Enhancement of Textile Supercapacitors. Polymers. 2022; 14(16):3399. https://doi.org/10.3390/polym14163399
Chicago/Turabian StyleYong, Sheng, Nicholas Hillier, and Stephen Paul Beeby. 2022. "Phase-Inverted Copolymer Membrane for the Enhancement of Textile Supercapacitors" Polymers 14, no. 16: 3399. https://doi.org/10.3390/polym14163399
APA StyleYong, S., Hillier, N., & Beeby, S. P. (2022). Phase-Inverted Copolymer Membrane for the Enhancement of Textile Supercapacitors. Polymers, 14(16), 3399. https://doi.org/10.3390/polym14163399