Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
Experimental Samples
- Defining key points/lines/areas/volumes in the concrete slab.
- Defining element type and material/geometric properties for fiber, gravels, as well as the cementitious matrix.
- Defining mesh lines/areas/volumes as required.
- Plain concrete sample;
- Concrete sample reinforced with 1% basalt fiber;
- Concrete sample reinforced with 2% basalt fiber;
- Concrete sample reinforced with 3% basalt fiber.
- Three percent very fine aggregates (average 4 mm) with a density of 2615 kg/m3 and a volume equivalent to that of the chopped fibers;
- Three percent coarse aggregates (average 7 mm) with a density of 2660 kg/m3 and a volume equivalent to that of the chopped fibers.
- The simulation of all samples with one end fixed and a force of 50 × 105 N acting on the opposite face.
- The simulation of the pure concrete sample with one end fixed and a force of 150 × 105 N acting on the opposite face (the force at which pure concrete the block reached failure in the actual conducted experiment).
- The simulation of the 1% fiber-reinforced concrete sample with one end fixed and a force of 300 × 105 N acting on the opposite face (the force at which the 1% fiber-reinforced concrete sample failed in the conducted experiment).
- The simulation of the 2% fiber sample with one end fixed and a force of 500 × 105 N acting on the opposite face (the force at which the 2% fiber-reinforced concrete sample failed in the conducted experiment).
- The simulation of all the 3% filler-based concrete samples (fibers, fine aggregates, and coarse aggregates) with one end fixed and a force of 700 × 105 N acting on the opposite face (the force at which the 3% fiber sample failed in the experiment conducted).
3. Results and Discussion
3.1. Experimental Results
3.2. Results of Simulations Using FEM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, X.; Gao, Z.; Cao, P.; Zhou, C. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete. Constr. Build. Mater. 2019, 202, 58–72. [Google Scholar] [CrossRef]
- Mishra, R.; Tiwari, R.; Marsalkova, M.; Behera, B.K. Effect of TiO2 nanoparticles on basalt/polysiloxane composites: Mechanical and thermal characterization. J. Text. Inst. 2012, 103, 1361–1368. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.; Hussain, S. Basalt hybrid woven textile materials for advanced thermal applications. Ind. J. Fibre Text. Res. 2019, 44, 56–64. [Google Scholar]
- Zhao, R.Y.; Wang, L.; Lei, Z.K.; Han, X.F.; Shi, J.N. Study on bending damage and failure of basalt fiber reinforced concrete under freeze-thaw cycles. Constr. Build. Mater. 2018, 163, 460–470. [Google Scholar] [CrossRef]
- Mishra, R.; Jamshaid, H. Thermo-mechanical characteristics of basalt hybrid & non-hybrid woven fabric reinforced epoxy composites. Polym. Compos. 2016, 37, 2982–2994. [Google Scholar] [CrossRef]
- Lago, B.D.; Taylor, S.E.; Deegan, P.; Ferrara, L.; Sonebi, M.; Crosset, P.; Pattarini, A. Full-scale testing and numerical analysis of a precast fibre reinforced self-compacting concrete slab pre-stressed with basalt fibre reinforced polymer bars. Compos. Part B: Eng. 2017, 128, 120–133. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. Interfacial performance and durability of textile reinforced concrete. J. Text. Inst. 2018, 109, 879–890. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.; He, Y.; Huang, G.; Li, J.; Niu, Z.; Gao, B. A review on durability of basalt fiber reinforced concrete. Compos. Sci. Technol. 2022, 225, 109519. [Google Scholar] [CrossRef]
- Haido, J.H. Flexural behavior of basalt fiber reinforced concrete beams: Finite element simulation with new constitutive relationships. Structures 2020, 27, 1876–1889. [Google Scholar] [CrossRef]
- Behera, B.K.; Pattanayak, A.K.; Mishra, R. Prediction of fabric drape behavior using finite element method. J. Text. Eng. 2008, 54, 103–110. [Google Scholar] [CrossRef]
- Mishra, R. Meso-scale finite element modeling of triaxial woven fabrics for composite in-plane reinforcement properties. Text. Res. J. 2013, 83, 1836–1845. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.; Sun, X. Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Constr. Build. Mater. 2022, 338, 127570. [Google Scholar] [CrossRef]
- Xie, H.; Yang, L.; Zhang, Q.; Huang, C.; Chen, M.; Zhao, K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr. Build. Mater. 2022, 330, 127292. [Google Scholar] [CrossRef]
- Mishra, R. Impact tolerance of 3D woven nanocomposites: A simulation approach. J. Text. Inst. 2013, 104, 562–570. [Google Scholar] [CrossRef]
- An, H.; Song, Y.; Liu, L.; Meng, X. Experimental Study of the Compressive Strengths of Basalt Fiber-Reinforced Concrete after Various High-Temperature Treatments and Cooling in Open Air and Water. Appl. Sci. 2021, 11, 8729. [Google Scholar] [CrossRef]
- Deng, Z.; Liu, X.; Liang, N.; de la Fuente, A.; Peng, H. Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines. Fibers 2021, 9, 43. [Google Scholar] [CrossRef]
- Mishra, R.; Gupta, N.; Pachauri, R.; Behera, B.K. Modeling and simulation of earthquake resistant 3D woven textile structural concrete composites. Compos. Part B-Eng. 2015, 81, 91–97. [Google Scholar] [CrossRef]
- Mohammad Jani, N.; Shakir Nasif, M.; Shafiq, N.; Holt, I. Experimental Investigation on the Effect of Varying Fiber Mix Proportion on the Mechanical and Thermal Performances of Fiber-Reinforced Self-Compacting Concrete under Hydrocarbon Fire Condition. Appl. Sci. 2020, 10, 4586. [Google Scholar] [CrossRef]
- Dvorkin, L.; Bordiuzhenko, O.; Tekle, B.H.; Ribakov, Y. A Method for the Design of Concrete with Combined Steel and Basalt Fiber. Appl. Sci. 2021, 11, 8850. [Google Scholar] [CrossRef]
- Bakis, C.; Bank, L.C.; Brown, V.; Cosenza, E.; Davalos, J.F.; Lesko, J.J.; Triantafillou, T.C. Fiber-reinforced polymer composites for construction-state-of-the-art review. J. Compos. Constr. 2002, 6, 73–87. [Google Scholar] [CrossRef]
- Jiang, C.; Fan, K.; Wu, F.; Chen, D. Experimental study on the mechanical properties and microstructure of chopped basalt fiber reinforced concrete. Mater. Des. 2014, 58, 187–193. [Google Scholar] [CrossRef]
- Ayub, T.; Shafiq, N.; Nuruddin, M.F. Mechanical properties of high-performance concrete reinforced with basalt fibers. Procedia Eng. 2014, 77, 131–139. [Google Scholar] [CrossRef]
- Ludovico, M.D.; Prota, A.; Manfredi, G. Structural upgrade using basalt fibers for concrete confinement. J. Compos. Constr. 2010, 14, 541–552. [Google Scholar] [CrossRef]
- Lopresto, V.; Leone, C.; Iorio, I.D. Mechanical characterization of basalt fiber reinforced plastic. Compos. Part B-Eng. 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Kabay, N. Abrasion resistance and fracture energy of concretes with basalt fiber. Constr. Build. Mater. 2014, 50, 95–101. [Google Scholar] [CrossRef]
- Manikandan, V.; Jappes, J.W.; Kumar, S.S.; Amuthakkannan, P. Investigation of the effect of surface modifications on the mechanical properties of basalt fiber reinforced polymer composites. Compos. Part B-Eng. 2012, 43, 812–818. [Google Scholar] [CrossRef]
- Carmisciano, S.; Rosa, I.M.D.; Sarasini, F.; Tamburrano, A.; Valente, M. Basalt woven fiber reinforced vinylester composites: Flexural and electrical properties. Mater. Des. 2011, 32, 337–342. [Google Scholar] [CrossRef]
- Sim, J.; Park, C. Characteristics of basalt fiber as a strengthening material for concrete structures. Compos. Part B-Eng. 2005, 36, 504–512. [Google Scholar] [CrossRef]
- Urbanski, M.; Lapko, A.; Garbacz, A. Investigation on concrete beams reinforced with basalt rebars as an effective alternative of conventional R/C structures. Procedia Eng. 2013, 57, 1183–1191. [Google Scholar] [CrossRef]
- Colombo, C.; Vergani, L.; Burman, M. Static and fatigue characterization of new basalt fiber reinforced composites. Compos. Struct. 2012, 94, 1165–1174. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Tensile behavior contrast of basalt and glass fibers after chemical treatment. Mater. Des. 2010, 31, 4244–4250. [Google Scholar] [CrossRef]
- Wei, B.; Cao, H.; Song, S. Degradation of basalt fiber and glass fiber/epoxy resin composites in seawater. Corros. Sci. 2011, 53, 426–431. [Google Scholar] [CrossRef]
- Mishra, R.; Jamshaid, H. A green material from rock: Basalt fiber- a Review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Mishra, R.; Behera, B.K.; Banthia, V. Modeling and simulation of 3D orthogonal fabrics for composite applications. J. Text. Inst. 2012, 103, 1255–1261. [Google Scholar] [CrossRef]
- Zhou, H.; Jia, B.; Huang, H.; Mou, Y. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete. Materials 2020, 13, 1362. [Google Scholar] [CrossRef]
- Stephens, D. Natural fiber reinforced concrete blocks. In Proceedings of the 20th WEDC Conference Affordable Water Supply and Sanitation, Colombo, Sri Lanka, 22–26 August 1994; pp. 317–321. [Google Scholar]
- Mishra, R.; Behera, B.; Bhagti, V. Influence of noncellulosic contents on nano scale refinement of waste jute fibers for reinforcement in polylactic acid films. Fiber Polym. 2014, 15, 1500–1506. [Google Scholar] [CrossRef]
- Feng, J.; Sun, W.; Zhai, H.; Wang, L.; Dong, H.; Wu, Q. Experimental study on hybrid effect evaluation of fiber reinforced concrete subjected to drop weight impacts. Materials 2018, 11, 2563. [Google Scholar] [CrossRef]
- Marar, K.; Eren, O.; Çelik, T. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Mater. Lett. 2001, 47, 297–304. [Google Scholar] [CrossRef]
- Mishra, R. FEM based prediction of 3D woven fabric reinforced concrete under mechanical load. J. Build. Eng. 2018, 18, 95–106. [Google Scholar] [CrossRef]
- ASTM C1399/C1399M-10; Standard Test Method for Obtaining Average Residual-Strength of Fiber-Reinforced Concrete. ASTM international: West Conshohocken, PA, USA, 2015.
- Alyousef, R.; Ali, B.; Mohammed, A.; Kurda, R.; Alabduljabbar, H.; Riaz, S. Evaluation of Mechanical and Permeability Characteristics of Microfiber-Reinforced Recycled Aggregate Concrete with Different Potential Waste Mineral Admixtures. Materials 2021, 14, 5933. [Google Scholar] [CrossRef]
- Raza, S.; Amir, M.; Azab, M.; Ali, B.; Abdallah, M.; Ouni, M.; Elhag, A. Effect of micro-silica on the physical, tensile, and load-deflection characteristics of micro fiber-reinforced high-performance concrete (HPC). Case Stud. Constr. Mater. 2022, 17, e01380. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Ali, M. Effect of basalt fibers on mechanical properties of calcium carbonate whisker-steel fiber reinforced concrete. Constr. Build. Mater. 2018, 192, 742–753. [Google Scholar] [CrossRef]
- Khan, M.; Cao, M.; Xie, C.; Ali, M. Hybrid fiber concrete with different basalt fiber length and content. Struct. Concr. 2022, 23, 346–364. [Google Scholar] [CrossRef]
Properties | Basalt Fiber | Concrete |
---|---|---|
Length | 1 cm | |
Diameter | 0.5 mm | |
Grade | M30 | |
Density | 2650 kg/m3 | 2240 kg/m3 |
Young’s modulus | 89 GPa | 17 GPa |
Poisson’s ratio | 0.3 | 0.33 |
Tensile yield strength | 4560 MPa | 0.142 MPa |
Compressive yield strength | 49.5 MPa | 24.13 MPa |
Ultimate tensile strength | 4840 MPa | 2.2 MPa |
Ultimate compressive strength | 45.326 MPa | 40 MPa |
Chemical Composition of Basalt Rocks | % |
---|---|
SiO2 | 52.8 |
Al2O3 | 17.5 |
Fe2O3 | 10.3 |
MgO | 4.63 |
CaO | 8.59 |
Na2O | 3.34 |
K2O | 1.46 |
TiO2 | 1.38 |
Type of Concrete Slab | Experimental Stress (105 Pa) | Deformation at Peak Stress (mm) |
---|---|---|
Pure concrete slab | 0.52 | 0.75 |
1% basalt-fiber-reinforced concrete slab | 3.64 | 0.67 |
2% basalt-fiber-reinforced concrete slab | 6.11 | 0.22 |
3% basalt-fiber-reinforced concrete slab | 7.68 | 0.13 |
3% fine-aggregate-reinforced concrete slab | 2.65 | 0.31 |
3% coarse-aggregate-reinforced concrete slab | 5.52 | 0.51 |
Type of Concrete Slab | Maximum Deformation (m) | Strain Energy (J) | Normal Stress (Pa) | Normal Strain (m/m) |
---|---|---|---|---|
Pure concrete slab | 4.52 × 10−7 | 1.53 × 10−7 | 6.9 × 104 | 4.2 × 10−6 |
1% basalt-fiber-reinforced concrete slab | 4.64 × 10−7 | 7.79 × 10−8 | 7.2 × 104 | 4.75 × 10−6 |
2% basalt-fiber-reinforced concrete slab | 4.67 × 10−7 | 7.75 × 10−8 | 7.29 × 104 | 4.76 × 10−6 |
3% basalt-fiber-reinforced concrete slab | 4.68 × 10−7 | 7.74 × 10−8 | 7.38 × 104 | 4.76 × 10−6 |
3% fine-aggregate-reinforced concrete slab | 4.65 × 10−7 | 8.76 × 10−8 | 7.05 × 104 | 4.42 × 10−6 |
3% coarse-aggregate-reinforced concrete slab | 4.52 × 10−7 | 3.96 × 10−8 | 6.96 × 104 | 4.31 × 10−6 |
Type of Concrete Slab | Maximum Deformation (m) | Strain Energy (J) | Normal Stress (Pa) | Normal Strain (m/m) |
---|---|---|---|---|
Pure concrete slab (150 × 105 N) | 1.36 × 10−6 | 1.32× 10−6 | 2.1 × 105 | 1.25 × 10−5 |
1% basalt-fiber-reinforced concrete slab (300 × 105 N) | 2.79 × 10−6 | 2.85 × 10−6 | 4.35 × 105 | 2.9 × 10−5 |
2% basalt-fiber-reinforced concrete slab (500 × 105 N) | 4.67 × 10−6 | 7.8 × 10−6 | 7.22 × 105 | 4.76 × 10−5 |
3% basalt-fiber-reinforced concrete slab (700 × 105 N) | 6.55 × 10−6 | 10.52 × 10−6 | 10.18 × 105 | 6.66 × 10−5 |
3% fine-aggregate-reinforced concrete slab (700 × 105 N) | 6.51 × 10−6 | 10.72 × 10−6 | 7.12 × 105 | 4.26 × 10−5 |
3% coarse-aggregate-reinforced concrete slab (700 × 105 N) | 6.33 × 10−6 | 7.76 × 10−6 | 6.58 × 105 | 3.88 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, R.K.; Behera, B.K.; Chandan, V.; Nazari, S.; Muller, M. Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers. Polymers 2022, 14, 4108. https://doi.org/10.3390/polym14194108
Mishra RK, Behera BK, Chandan V, Nazari S, Muller M. Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers. Polymers. 2022; 14(19):4108. https://doi.org/10.3390/polym14194108
Chicago/Turabian StyleMishra, Rajesh Kumar, Bijoya Kumar Behera, Vijay Chandan, Shabnam Nazari, and Miroslav Muller. 2022. "Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers" Polymers 14, no. 19: 4108. https://doi.org/10.3390/polym14194108
APA StyleMishra, R. K., Behera, B. K., Chandan, V., Nazari, S., & Muller, M. (2022). Modeling and Simulation of Mechanical Performance in Textile Structural Concrete Composites Reinforced with Basalt Fibers. Polymers, 14(19), 4108. https://doi.org/10.3390/polym14194108