The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents for Synthesis and Analysis
2.2. Synthesis of Acetoacetylated Tall Oil Fatty Acid Polyols
2.2.1. Epoxidation of TOFA
2.2.2. Synthesis of Polyols from EIRTOFA
2.2.3. Acetoacetylation of Polyols
- epoxidized tall oil fatty acids 1,4-butanediol polyol acetoacetate (EIRTOFA_BD_AA);
- epoxidized tall oil fatty acids trimethylolpropane polyol acetoacetate (EIRTOFA_TMP_AA);
- Neopolyol 380 acetoacetate (NEO380_AA);
- Lupranol 3300 acetoacetate (L3300_AA).
2.3. Characterization of the Synthesized Michael Donor Components
3. Results and Discussion
3.1. Characteristics of Synthesized Michael Donor Components
3.2. Viscosity Analysis of the Michael Donor Components
3.3. FTIR Analysis of the Michael Donor Components
3.4. MALDI-TOF Spectra of the Michael Donor Components
3.5. GPC/SEC Analysis of the Michael Donor Components
3.6. NMR Spectra of the Michael Donor Components
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission the European Green Deal. Eur. Comm. 2019, 53, 24. [CrossRef]
- Di Bartolo, A.; Infurna, G.; Dintcheva, N.T. A Review of Bioplastics and Their Adoption in the Circular Economy. Polymers 2021, 13, 1229. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Garrison, T.F.; Madbouly, S.A.; Kessler, M.R. Recent Advances in Vegetable Oil-Based Polymers and Their Composites. Prog. Polym. Sci. 2017, 71, 91–143. [Google Scholar] [CrossRef]
- Kircher, M. Bioeconomy: Markets, Implications and Investment Opportunities. Economies 2019, 7, 73. [Google Scholar] [CrossRef]
- Vevere, L.; Fridrihsone, A.; Kirpluks, M.; Cabulis, U. A Review of Wood Biomass-Based Fatty Acids and Rosin Acids Use in Polymeric Materials. Polymers 2020, 12, 2706. [Google Scholar] [CrossRef]
- Lubguban, A.A.; Ruda, R.J.G.; Aquiatan, R.H.; Paclijan, S.; Magadan, K.O.; Balangao, J.K.B.; Escalera, S.T.; Bayron, R.R.; Debalucos, B.; Lubguban, A.A.; et al. Soy-Based Polyols and Polyurethanes. Kimika 2017, 28, 1–19. [Google Scholar] [CrossRef]
- Abolins, A.; Pomilovskis, R.; Vanags, E.; Mierina, I.; Michalowski, S.; Fridrihsone, A.; Kirpluks, M. Impact of Different Epoxidation Approaches of Tall Oil Fatty Acids on Rigid Polyurethane Foam Thermal Insulation. Materials 2021, 14, 894. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, J.J.; Zhang, J.X. Polyols Prepared from Ring-Opening Epoxidized Soybean Oil by a Castor Oil-Based Fatty Diol. Int. J. Polym. Sci. 2015, 2015, 1–8. [Google Scholar] [CrossRef]
- Kirpluks, M.; Kalnbunde, D.; Walterova, Z.; Cabulis, U. Rapeseed Oil as Feedstock for High Functionality Polyol Synthesis. J. Renew. Mater. 2017, 5, 258–270. [Google Scholar] [CrossRef]
- Siti Munira, Y.; Ahmad Faiza, M.; Rahmah, M. Synthesis and Characterization of Palm Oil Based Polyol. Adv. Mater. Res. 2013, 812, 275–280. [Google Scholar] [CrossRef]
- Furtwengler, P.; Avérous, L. Renewable Polyols for Advanced Polyurethane Foams from Diverse Biomass Resources. Polym. Chem. 2018, 9, 4258–4287. [Google Scholar] [CrossRef]
- Cao, Z.; Gao, F.; Zhao, J.; Wei, X.; Cheng, Q.; Zhong, J.; Lin, C.; Shu, J.; Fu, C.; Shen, L. Bio-Based Coating Materials Derived from Acetoacetylated Soybean Oil and Aromatic Dicarboxaldehydes. Polymers 2019, 11, 1809. [Google Scholar] [CrossRef] [PubMed]
- Kirpluks, M.; Vanags, E.; Abolins, A.; Michalowski, S.; Fridrihsone, A.; Cabulis, U. High Functionality Bio-Polyols from Tall Oil and Rigid Polyurethane Foams Formulated Solely Using Bio-Polyols. Materials 2020, 13, 1985. [Google Scholar] [CrossRef] [PubMed]
- Sardari, A.; Sabbagh Alvani, A.A.; Ghaffarian, S.R. Castor Oil-Derived Water-Based Polyurethane Coatings: Structure Manipulation for Property Enhancement. Prog. Org. Coatings 2019, 133, 198–205. [Google Scholar] [CrossRef]
- Zhang, C.; Madbouly, S.A.; Kessler, M.R. Biobased Polyurethanes Prepared from Different Vegetable Oils. ACS Appl. Mater. Interfaces 2015, 7, 1226–1233. [Google Scholar] [CrossRef]
- Dechent, S.E.; Kleij, A.W.; Luinstra, G.A. Fully Bio-Derived CO2 Polymers for Non-Isocyanate Based Polyurethane Synthesis. Green Chem. 2020, 22, 969–978. [Google Scholar] [CrossRef]
- Sternberg, J.; Pilla, S. Materials for the Biorefinery: High Bio-Content, Shape Memory Kraft Lignin-Derived Non-Isocyanate Polyurethane Foams Using a Non-Toxic Protocol. Green Chem. 2020, 22, 6922–6935. [Google Scholar] [CrossRef]
- Lindsay, C.D.; Timperley, C.M. TRPA1 and Issues Relating to Animal Model Selection for Extrapolating Toxicity Data to Humans. Hum. Exp. Toxicol. 2020, 39, 14–36. [Google Scholar] [CrossRef]
- Kathalewar, M.; Sabnis, A.; D’Mello, D. Isocyanate Free Polyurethanes from New CNSL Based Bis-Cyclic Carbonate and Its Application in Coatings. Eur. Polym. J. 2014, 57, 99–108. [Google Scholar] [CrossRef]
- Kathalewar, M.S.; Joshi, P.B.; Sabnis, A.S.; Malshe, V.C. Non-Isocyanate Polyurethanes: From Chemistry to Applications. RSC Adv. 2013, 3, 4110–4129. [Google Scholar] [CrossRef]
- Gomez-lopez, A.; Elizalde, F.; Sardon, H. Trends in Non-Isocyanate Polyurethane (NIPU) Development. Chem. Commun. 2021, 57, 12254–12265. [Google Scholar] [CrossRef]
- He, X.; Zhong, J.; Cao, Z.; Wang, J.; Gao, F.; Xu, D.; Shen, L. An Exploration of the Knoevenagel Condensation to Create Ambient Curable Coating Materials Based on Acetoacetylated Castor Oil. Prog. Org. Coatings 2019, 129, 21–25. [Google Scholar] [CrossRef]
- Trevino, A.S.; Trumbo, D.L. Acetoacetylated Castor Oil in Coatings Applications. Prog. Org. Coatings 2002, 44, 49–54. [Google Scholar] [CrossRef]
- Xu, D.; Cao, Z.; Wang, T.; Zhong, J.; Zhao, J.; Gao, F.; Luo, X.; Fang, Z.; Cao, J.; Xu, S.; et al. An Ambient-Cured Coating Film Obtained via a Knoevenagel and Michael Addition Reactions Based on Modified Acetoacetylated Castor Oil Prepared by a Thiol-Ene Coupling Reaction. Prog. Org. Coatings 2019, 135, 510–516. [Google Scholar] [CrossRef]
- Zuo, H.; Cao, Z.; Shu, J.; Xu, D.; Zhong, J.; Zhao, J.; Wang, T.; Chen, Y.; Gao, F.; Shen, L. Effect of Structure on the Properties of Ambient-Cured Coating Films Prepared via a Michael Addition Reaction Based on an Acetoacetate-Modified Castor Oil Prepared by Thiol-Ene Coupling. Prog. Org. Coatings 2019, 135, 27–33. [Google Scholar] [CrossRef]
- Zhu, Y.; Gao, F.; Zhong, J.; Shen, L.; Lin, Y. Renewable Castor Oil and DL-Limonene Derived Fully Bio-Based Vinylogous Urethane Vitrimers. Eur. Polym. J. 2020, 135, 109865. [Google Scholar] [CrossRef]
- Wang, T.; Wang, J.; He, X.; Cao, Z.; Xu, D.; Gao, F.; Zhong, J.; Shen, L. An Ambient Curable Coating Material Based on the Michael Addition Reaction of Acetoacetylated Castor Oil and Multifunctional Acrylate. Coatings 2019, 9, 37. [Google Scholar] [CrossRef]
- Krall, E.M.; Serum, E.M.; Sibi, M.P.; Webster, D.C. Catalyst-Free Ligin Valorization by Acetoacetylation. Structural Elucidation by Comparison with Model Compounds. Green Chem. 2018, 20, 2959–2966. [Google Scholar] [CrossRef]
- Witzeman, J.S.; Nottingham, W.D. Transacetoacetylation with Tert-Butyl Acetoacetate: Synthetic Applications. J. Org. Chem. 1991, 56, 1713–1718. [Google Scholar] [CrossRef]
- Lopes, R.D.V.V.; Zamian, J.R.; Resck, I.S.; Sales, M.J.A.; Dos Santos, M.L.; Da Cunha, F.R. Physicochemical and Rheological Properties of Passion Fruit Oil and Its Polyol. Eur. J. Lipid Sci. Technol. 2010, 112, 1253–1262. [Google Scholar] [CrossRef]
- Petroskey, W.T.; Gott, L.; Carter, T.E. Acetoacetylation: A Process for Polyol Viscosity Reduction. J. Cell. Plast. 1993, 29, 458–459. [Google Scholar] [CrossRef]
- Milchert, E.; Malarczyk-Matusiak, K.; Musik, M. Technological Aspects of Vegetable Oils Epoxidation in the Presence of Ion Exchange Resins: A Review. Polish J. Chem. Technol. 2016, 18, 128–133. [Google Scholar] [CrossRef]
- Pomilovskis, R.; Mierina, I.; Fridrihsone, A.; Kirpluks, M. Bio-Based Polymer Developments from Tall Oil Fatty Acids by Exploiting Michael Addition. Polymers 2022, 14, 4068. [Google Scholar] [CrossRef]
Components | Acid Value, mg KOH/g | Hydroxyl Value, mg KOH/g | Iodine Value, g I2/100 g | Moisture, % | AA Groups, mol/100 g | Conversion of Hydroxyl, mol% | |
---|---|---|---|---|---|---|---|
Tall-oil-based | TOFA | 195 ± 3 | - | 157 ± 7 | 0.50 ± 0.02 | - | - |
EIRTOFA | 159 ± 2 | - | 52.4 ± 0.6 | 0.32 ± 0.01 | - | - | |
EIRTOFA_BD | 5.8 ± 0.2 | 258 ± 5 | - | 0.20 ± 0.02 | - | - | |
EIRTOFA_BD_AA | <5 | 36.2 ± 0.8 | - | 0.025 ± 0.005 | 0.3307 | 80.5 | |
EIRTOFA_TMP | 6.9 ± 0.4 | 415 ± 4 | - | 0.049 ± 0.007 | - | - | |
EIRTOFA_TMP_AA | <5 | 41.6 ± 0.3 | - | 0.037 ± 0.003 | 0.4562 | 83.7 | |
Commercial polyols-based | NEO380 | <5 | 371 ± 3 | - | 0.068 ± 0.002 | - | - |
NEO380_AA | <5 | 40.7 ± 0.6 | - | 0.048 ± 0.002 | 0.4242 | 82.9 | |
L3300 | <5 | 400 ± 5 | - | 0.060 ± 0.0012 | - | - | |
L3300_AA | <5 | 26.2 ± 0.4 | - | 0.021 ± 0.003 | 0.4456 | 89.5 |
Synthesized Components | Viscosity, mPa·s | |
---|---|---|
Tall-oil-based | TOFA | 27.0 ± 0.4 |
EIRTOFA | 3,012 ± 2 | |
EIRTOFA_BD | 3,017 ± 5 | |
EIRTOFA_BD_AA | 1,104 ± 3 | |
EIRTOFA_TMP | 118,400 ± 20 | |
EIRTOFA_TMP_AA | 5,466 ± 12 | |
Commercial polyols-based | L3300 | 382 ± 2 |
L3300_AA | 211.1 ± 0.8 | |
NEO380 | 2,109 ± 8 | |
NEO380_AA | 814 ± 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pomilovskis, R.; Mierina, I.; Beneš, H.; Trhlíková, O.; Abolins, A.; Fridrihsone, A.; Kirpluks, M. The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development. Polymers 2022, 14, 4107. https://doi.org/10.3390/polym14194107
Pomilovskis R, Mierina I, Beneš H, Trhlíková O, Abolins A, Fridrihsone A, Kirpluks M. The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development. Polymers. 2022; 14(19):4107. https://doi.org/10.3390/polym14194107
Chicago/Turabian StylePomilovskis, Ralfs, Inese Mierina, Hynek Beneš, Olga Trhlíková, Arnis Abolins, Anda Fridrihsone, and Mikelis Kirpluks. 2022. "The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development" Polymers 14, no. 19: 4107. https://doi.org/10.3390/polym14194107
APA StylePomilovskis, R., Mierina, I., Beneš, H., Trhlíková, O., Abolins, A., Fridrihsone, A., & Kirpluks, M. (2022). The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development. Polymers, 14(19), 4107. https://doi.org/10.3390/polym14194107